Preprints
https://doi.org/10.5194/egusphere-2022-1305
https://doi.org/10.5194/egusphere-2022-1305
05 Dec 2022
 | 05 Dec 2022

Optimizing the Carbonic Anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the simple biosphere model (SiB4)

Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol

Abstract. Carbonyl Sulfide (COS) is a useful tracer to estimate Gross Primary Production (GPP) because it shares part of the uptake pathway with CO2. COS is taken up in plants through hydrolysis, catalyzed by the enzyme carbonic anhydrase (CA), but is not released. The Simple Biosphere model version 4 (SiB4) simulates COS leaf uptake using a conductance approach. SiB4 applies the temperature response of the RuBisCo enzyme (used for photosynthesis) to simulate the COS leaf uptake, but the CA enzyme might respond differently. We introduce a new temperature response function for CA in SiB4, based on enzyme kinetics with an optimum temperature. Moreover, we determine Ball-Berry model parameters for stomatal conductance (gs) using observation-based estimates of COS flux, GPP, and gs along with meteorological measurements in an evergreen needleleaf forest (ENF) and deciduous broadleaf forest (DBF). We find that CA has optimum temperatures of 22 °C (ENF) and 38 °C (DBF) with CA’s activation energy as 40 kJ mol-1, which is lower than that of RuBisCo (45 °C), suggesting that air temperature changes can critically affect CA’s catalyzation activity. Optimized values for the Ball-Berry offset parameter b0 (ENF: 0.013, DBF: 0.007 mol m-2 s-1) are higher (lower) than the original value (0.010 mol m-2 s-1) in the ENF (DBF), and optimized values for the Ball-Berry slope parameter b1 (ENF: 16.36, DBF: 11.43) are higher than the original value (9.0) at both sites. We apply the optimized gCA and gs parameters in SiB4 site simulations, thereby improving the timing and peak of COS assimilation. In addition, we show that SiB4 underestimates the leaf humidity stress under conditions where high VPD should limit gs in the afternoon, thereby overestimating gs. Furthermore, we simulate global COS biosphere fluxes, which show smaller COS uptake in the tropics and larger COS uptake at higher latitudes, corresponding with the updates made to the CA temperature response. This SiB4 update helps resolve gaps in the COS budget identified in earlier studies. Using our optimization and additional observations of COS uptake over various climate and plant types, we expect further improvements in global COS biosphere flux estimates.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

05 Jul 2023
Optimizing the carbonic anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the Simple Biosphere model (SiB4)
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
Biogeosciences, 20, 2573–2594, https://doi.org/10.5194/bg-20-2573-2023,https://doi.org/10.5194/bg-20-2573-2023, 2023
Short summary
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1305', Georg Wohlfahrt, 25 Dec 2022
  • RC2: 'Comment on egusphere-2022-1305', Anonymous Referee #2, 11 Jan 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1305', Georg Wohlfahrt, 25 Dec 2022
  • RC2: 'Comment on egusphere-2022-1305', Anonymous Referee #2, 11 Jan 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (10 Mar 2023) by Christopher Still
AR by Ara Cho on behalf of the Authors (16 Mar 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Reconsider after major revisions (21 Mar 2023) by Christopher Still
ED: Referee Nomination & Report Request started (22 Mar 2023) by Christopher Still
RR by Georg Wohlfahrt (04 Apr 2023)
ED: Publish as is (15 May 2023) by Christopher Still
AR by Ara Cho on behalf of the Authors (19 May 2023)

Journal article(s) based on this preprint

05 Jul 2023
Optimizing the carbonic anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in the Simple Biosphere model (SiB4)
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
Biogeosciences, 20, 2573–2594, https://doi.org/10.5194/bg-20-2573-2023,https://doi.org/10.5194/bg-20-2573-2023, 2023
Short summary
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol
Ara Cho, Linda M. J. Kooijmans, Kukka-Maaria Kohonen, Richard Wehr, and Maarten C. Krol

Viewed

Total article views: 369 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
247 103 19 369 4 7
  • HTML: 247
  • PDF: 103
  • XML: 19
  • Total: 369
  • BibTeX: 4
  • EndNote: 7
Views and downloads (calculated since 05 Dec 2022)
Cumulative views and downloads (calculated since 05 Dec 2022)

Viewed (geographical distribution)

Total article views: 379 (including HTML, PDF, and XML) Thereof 379 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 02 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Carbonyl Sulfide (COS) is a useful constraint on photosynthesis. To simulate COS leaf flux better in the SiB4 model, we propose a new temperature function for the enzyme carbonic anhydrase (CA) and optimize conductances using observations. CA has an optimum temperature below 40 °C, which can be influenced critically by air temperature changes. It brings tropics a smaller and higher latitudes a larger uptake. This update helps resolve gaps in the COS budget identified in earlier studies.