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Abstract. Carbonyl Sulfide (COS) is a useful tracer to estimate Gross Primary Production (GPP) because it shares part of the 10 

uptake pathway with CO2. COS is taken up in plants through hydrolysis, catalyzed by the enzyme carbonic anhydrase (CA), 

but is not released. The Simple Biosphere model version 4 (SiB4) simulates COS leaf uptake using a conductance approach. 

SiB4 applies the temperature response of the RuBisCo enzyme (used for photosynthesis) to simulate the COS leaf uptake, but 

the CA enzyme might respond differently. We introduce a new temperature response function for CA in SiB4, based on enzyme 

kinetics with an optimum temperature. Moreover, we determine Ball-Berry model parameters for stomatal conductance (gs) 15 

using observation-based estimates of COS flux, GPP, and gs along with meteorological measurements in an evergreen 

needleleaf forest (ENF) and deciduous broadleaf forest (DBF). We find that CA has optimum temperatures of 22 °C (ENF) 

and 38 °C (DBF) with CA’s activation energy as 40 kJ mol-1, which is lower than that of RuBisCo (45 °C), suggesting that air 

temperature changes can critically affect CA’s catalyzation activity. Optimized values for the Ball-Berry offset parameter b0 

(ENF: 0.013, DBF: 0.007 mol m-2 s-1) are higher (lower) than the original value (0.010 mol m-2 s-1) in the ENF (DBF), and 20 

optimized values for the Ball-Berry slope parameter b1 (ENF: 16.36, DBF: 11.43) are higher than the original value (9.0) at 

both sites. We apply the optimized gCA and gs parameters in SiB4 site simulations, thereby improving the timing and peak of 

COS assimilation. In addition, we show that SiB4 underestimates the leaf humidity stress under conditions where high VPD 

should limit gs in the afternoon, thereby overestimating gs. Furthermore, we simulate global COS biosphere fluxes, which show 

smaller COS uptake in the tropics and larger COS uptake at higher latitudes, corresponding with the updates made to the CA 25 

temperature response. This SiB4 update helps resolve gaps in the COS budget identified in earlier studies. Using our 

optimization and additional observations of COS uptake over various climate and plant types, we expect further improvements 

in global COS biosphere flux estimates. 
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1 Introduction 30 

The leaf assimilation of the atmospheric trace gas carbonyl sulfide (COS) has been suggested as a proxy to overcome the 

limitations of estimating photosynthetic carbon dioxide (CO2) assimilation (Whelan et al., 2018). Observations of the net 

ecosystem exchange (NEE) of CO2 include both Gross Primary Production (GPP) and ecosystem respiration, and those two 

individual components cannot be directly observed. COS follows the same diffusional pathway into leaves through plant 

stomata as CO2. COS is then destroyed through hydrolysis catalyzed by the enzyme carbonic anhydrase (CA) and is assumed 35 

not to be produced by any process within leaves (Protoschill-Krebs et al., 1996; Stimler et al., 2010). The CA chemistry is not 

light-dependent (Protoschill-Krebs et al., 1996), in contrast to photosynthetic CO2 fixation, which requires light. Therefore, 

measurements of COS uptake can provide information on stomatal conductance, e.g. during the night (Kooijmans et al., 2017), 

which cannot be obtained from CO2 measurements.   

 40 

Atmospheric COS mole fractions vary around 500 parts per trillion (ppt) and are primarily influenced by biosphere uptake, 

ocean emissions, and anthropogenic emissions (Kettle et al., 2002). Recent studies have found that a source is missing in the 

tropical region (Berry et al., 2013; Glatthor et al., 2015; Kuai et al., 2015; Ma et al., 2021). Moreover, Berry et al. (2013) 

showed that a sink is missing, or a source is overestimated at higher latitudes. These findings ask for careful evaluation of all 

sources and sinks, including the biosphere.  45 

 

Biosphere models, such as the Simple Biosphere model, version 4 (SiB4) (Berry et al., 2013; Kooijmans et al., 2021) and the 

Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE; Launois et al., 2015; Maignan et al., 2021, 

Remaud et al., 2021, Abadie et al., 2021) have been used to estimate ecosystem exchange of COS quantitatively. The SiB4 

COS biosphere exchange was recently assessed against observations by Kooijmans et al. (2021). They stressed the need to 50 

account for spatial and temporal variations in atmospheric COS mole fractions, which largely reduce SiB4 COS biosphere 

uptake in the tropics (although observations to confirm this influence are lacking). The calculated reduction in the tropics was 

not large enough to explain the gap in the COS budget. Kooijmans et al. (2021) and Vesala et al., (2022) also found that SiB4 

COS biosphere flux simulations were low compared to observations in the boreal region, consistent with the underestimations 

found by Ma et al. (2021). Our study follows one of the recommendations in Kooijmans et al. (2021) by focusing on the 55 

parameterization of the temperature dependence of the CA enzyme activity to improve simulations of the vegetation COS 

uptake in SiB4.  

 

In SiB4, the COS assimilation is described as a series of resistances (i.e. inverse conductances) at the leaf boundary layer (gb), 

the stomatal pores (gs), and the leaves’ interior (gCA). These conductances to COS are scaled relative to conductances for water 60 

vapor or CO2 with diffusivity ratios and a calibration factor. For gCA, previous studies found that both the CA enzyme activity 

(Badger and Price 1994) and mesophyll conductance (Evans et al., 1994) scale with the maximum velocity of carboxylation 
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(Vmax) by the enzyme RuBisCo. Therefore, the COS internal conductance in SiB4 is scaled to Vmax through a single calibration 

factor 𝛼 based on laboratory leaf gas exchange measurements (Stimler et al., 2010, 2011, Berry et al., 2013). However, the 

enzymatic control of COS and CO2 assimilation differ. COS molecules are hydrolyzed by the enzyme CA in the mesophyll 65 

cells (Protoschill-Kreb et al., 1996). In contrast, photosynthesis is further controlled by the enzyme RuBisCo. Thus, CO2 has 

a different point of uptake compared to COS. The enzyme activity depends on the enzyme abundance and is related to 

environmental parameters such as temperature and pH (Michaelis and Menten, 1913). In particular, the CA enzyme does not 

require light to catalyze COS hydrolysis, whereas the RuBisCo enzyme does require light (Stimler et al., 2010). 

 70 

Several studies found that the leaf relative uptake ratio (LRU, which is proportional to the ratio of COS and CO2 deposition 

velocities) varies with temperature under conditions where light was not limiting photosynthesis (Cochavi et al., 2021; Stimler 

et al., 2010; Sun et al., 2018; Kooijmans et al., 2019). More specifically, the LRU decreased with increasing temperatures 

above 15 ℃, indicating that COS uptake has a lower optimum temperature than CO2 uptake, possibly driven by different 

temperature responses of the CA and RuBisCo enzymes. Therefore, to accurately simulate the relation between COS and CO2 75 

exchange in leaves, it is necessary to use separate temperature response equations for the internal conductance to CO2 and 

COS.  

 

Besides uncertainties in gCA, uncertainties in gs can also affect the accuracy of simulated COS assimilation. A common 

approach for simulating gs is the semi-empirical Ball-Berry (BB) model (e.g. Ball et al., 1987; Ball 1988; Collatz et al., 1992). 80 

This model is also applied in SiB4 and utilizes a set of related variables (e.g. relative humidity, CO2 concentration at the leaf 

surface, photosynthesis) and two empirical constants. One of the constants (b1) describes the slope of the relation between gs 

and GPP. The other constant (b0) represents the residual gs in the dark. The current implementation of the BB model in SiB4 

has only one pair of b1 and b0 values for C3 plants and only one pair for C4 plants, whereas the BB constants should ideally 

be prescribed for each plant functional type (PFT) separately to obtain accurate gs (Miner et al., 2017). To constrain b0 requires 85 

information on nighttime gs. However, obtaining gs estimates from nighttime water vapor flux measurements in the field is 

highly uncertain due to observational constraints (Papale et al., 2006; Wehr et al., 2017; Wehr and Saleska, 2021). As an 

alternative, nighttime COS uptake was previously reported (White et al., 2010; Belviso et al., 2013; Commane et al., 2013, 

2015; Berkelhammer et al., 2014; Billesbach et al., 2014; Wehr et al., 2017; Kooijmans et al., 2017), and when the soil uptake 

is properly accounted for, this flux could provide information on stomatal opening. Several multi-year measurement datasets 90 

of CO2 and COS biosphere and soil fluxes are now available (Commane et al., 2015; Wehr et al., 2017; Vesala et al., 2022), 

making it possible to use COS to provide information on gs and thereby constrain the BB model parameters.  

 

This research aims to optimize the temperature response of CA and BB model parameters to better estimate COS assimilation 

in the SiB4 model. To do so, we will use observed COS leaf fluxes and GPP, plus observation-based gs. The optimization will 95 

be based on observations from two PFTs: a boreal evergreen needleleaf forest (ENF) in Hyytiälä, Finland and a temperate 
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deciduous broadleaf forest (DBF) at Harvard Forest, USA. The optimized parameters will be applied in the global simulation 

of the SiB4 biosphere model to evaluate the effects on the global COS biosphere sink.   

2 Methodology 

2.1 Modelling COS leaf uptake 100 

2.1.1 SiB4 biosphere model  

The SiB4 model is a land surface model that calculates the COS flux as described in Berry et al. (2013). The main application 

of the model is to estimate land-atmosphere exchange of carbon, land surface energy, and water budgets (Sellers et al., 1986; 

Sato et al., 1989). SiB4 has a timestep of 10-minutes and operates on a spatial resolution of 0.5° x 0.5°. Unlike the previous 

SiB3 model, which relies on satellite information, version 4 fully simulates the terrestrial carbon cycle using a process-based 105 

model (Haynes et al., 2019). 

 

As each vegetation type has different physiological and phenological characteristics, SiB4 simulates photosynthesis in a 

heterogenic land cover with different plant functional types (PFTs) per site or grid cell, each with separate fractions. These 

PFTs consist of nine natural vegetation classes and three specific crop types (maize, soybeans, and winter wheat), plus the 110 

separation of C3 and C4 plants in generic cropland and grassland. Besides responses of plant growth to temperature, humidity, 

radiation, and precipitation, the model accounts for environmental stress factors as a limitation to plant growth: the leaf 

humidity stress (FLH), the root-zone water stress (FRZ), and the canopy temperature stress (FT). Several variables (e.g. Vmax of 

RuBisCo) are prescribed according to phenological stages: leaf-out, growth, maturity, senescence, and dormant stages. The 

leaf-out stage begins when the environmental conditions are suitable for photosynthesis to take place, and the growth stage is 115 

determined when the canopy is large enough to support photosynthesis. The maturity starts when the leaf amount is maintained. 

When plants experience stress and photosynthetic capacity is reduced, it is prescribed as senescence. In the dormant stage, 

plants do not have leaves in the canopy, or it has unsuitable conditions for photosynthesis (Haynes et al., 2020). 

2.1.2 Module for COS vegetation uptake in SiB4 

SiB4 simulates COS vegetation assimilation as a combination of three resistances (gs, gb, and gCA) multiplied by the 120 

atmospheric COS mole fraction (Berry et al., 2013): 

𝐹!"# = 𝐶!"# '
$.&'
(!
+ $.)*

("
+ $

(#$
)
+$
		          (1) 

where Fcos is the COS vegetation assimilation in the canopy (pmol m-2 s-1), and Ccos is the atmospheric COS mole fraction in 

the canopy (pmol mol-1). Due to its larger size, COS diffusion through the stomata and the laminar boundary are slowed down 

by a factor of 1.94 and 1.56, respectively, relative to water vapor (Seibt et al., 2010; Stimler et al., 2010).  125 
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The stomatal conductance gs (mol m-2 s-1) in SiB4 is calculated by using the BB model. This model relates gs and GPP as a 

function of environmental factors with two empirical constants b0 and b1: 

𝑔# = 𝑏$
,--%&'(
	/0)!

𝐹12 + 𝑏3 ∙ 𝐿𝐴𝐼 ∙ 𝐹45	           (2)  

where GPPSiB4 (mol C m-2 s-1) is the canopy CO2 assimilation, CO2S (mol C mol air-1) is the CO2 mole fraction at the leaf 130 

surface, FLH (-) is the leaf humidity stress factor, LAI is the leaf area index (-), and FRZ is a non-dimensional term that accounts 

for root-zone water stress. FLH is related to relative humidity at the leaf surface and is calculated as a ratio of the water vapor 

mixing ratio at the leaf surface to the water vapor mixing ratio in the leaf internal space (Sellers et al. 1992). The value of FLH 

for ENF has a lower bound of 0.7, making ENF more resilient to humidity stress. However, Smith et al. (2020) found that with 

the 0.7 threshold in place, SiB4 did not accurately simulate a drought response for European ENF ecosystems. Therefore, we 135 

removed this lower bound in the optimization, but will show the impact in a sensitivity study in Sect. 3.5.1. 

 

The empirical constant b1 is the slope of the linear relationship between gs and GPPSiB4 FLH CO2s-1 and b0 (mol m-2 s-1) is the 

intercept indicating minimum gs (Ball et al., 1987; Ball 1988). The choice for b1 significantly impacts simulated transpiration 

(Leuning et al., 1998; Lai et al., 2000; Bauerle et al., 2014) and is prescribed in SiB4 as 9.0 for C3 plants and 4.0 for C4 plants. 140 

The coefficient b0 is 0.01 mol m-2 s-1 for most PFTs but 0.04 mol m-2 s-1 for crops and C4 plants. The prescribed b0 term is 

converted from the leaf to the canopy scale by multiplying by LAI. 

 

GPPSiB4 is explicitly calculated in SiB4 using the carbon pool with three assimilation rates limited by enzyme activity (wc), 

light (we), and carbon compound export (ws) (Haynes et al., 2020). The three rates are calculated by functions fc,e,s described 145 

in detail in Sellers et al. (1996) depending on a canopy temperature (Tcan, K): 

𝑤! = 𝑓!(𝑉678(𝑇!79), 𝑝𝐶𝑂:; , 𝑝𝑂:(𝑇!79), 𝛾∗)         (3) 

𝑤= = 𝑓=(𝐴𝑃𝐴𝑅, 𝑝𝐶𝑂2; , 𝛾∗)           (4)  

𝑤# = 𝑓#(𝑉678(𝑇!79), 𝐹45, 𝑝𝑂:(𝑇!79))         (5) 

Where pCO2i (Pa) is the internal partial pressure of CO2, pO2(T) (Pa) is the temperature response of partial pressure of O2, 150 

APAR (mol m-2 s-1) is the absorbed photosynthetically active radiation, and 𝛾* (Pa) is the CO2 photo-compensation point. The 

SiB4 model defines GPP as the minimum of these three limiting rates. Note that GPPSiB4 is used in SiB4 to calculate the COS 

leaf flux via gs, as described in Eq. (2) and evaluated independently from GPP calculated by the BB model (GPPBB) which will 

be introduced in Sect. 2.3.1.  

 155 

The COS molecules that have diffused into the leaf mesophyll cells are hydrolyzed in a reaction catalyzed by the CA enzyme 

(gCA). SiB4 assumes that the gCA (mol m-2 s-1) scales with Vmax of RuBisCo at 298 K (Vmax, rub, mol m-2 s-1) as follows:  

𝑔/>(𝑃𝑆) = 𝛼	 ∙ 	𝑉678,@AB(𝑃𝑆) ∙ 𝑓(𝑇!79)C;D' ∙ 𝐹1/(𝑃𝑆) ∙ 𝐹45 ∙ ?
-

-!*+
@ ∙ (E!79

E,
)      (6) 
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Vmax, rub varies with phenological stage (PS) (see Table 3) and is scaled with a Tcan response function f(Tcan)SiB4 that prescribes 

the relative increase per 10 K increase (Q10) as 2.1: 160 

𝑓(𝑇!79)C;D' = 2.13.$(E+-.+:&G)	          (7) 

In SiB4, the canopy temperature Tcan is calculated from the temperature above the canopy, which is normally obtained from a 

meteorological analysis dataset (Haynes et al., 2020). In this study, however, we use the temperature measured above the 

canopy to obtain Tcan by SiB4. Likewise, we use the specific humidity measured above the canopy, which is used by SiB4 to 

calculate the leaf humidity stress factor FLH at leaf surface level, needed in Eq. (2). 165 

 

Other modifying factors in Eq. (6) are the ratio of atmosphere pressure (P, hPa) to the surface pressure (Psfc = 1,000 hPa) and 

the ratio of the temperature to the reference temperature (T0 = 273.15 K). FLC (-) is the scaling factor from leaf to canopy, 

accounting for a fraction of absorbed PAR (FPAR) and other factors such as light scattering and leaf projection. The calibration 

parameter 𝛼 (-) was obtained from simultaneous measurements of COS and CO2 uptake (Stimler et al., 2010, 2012; Berry et 170 

al., 2013) and was estimated as 1400 for C3 and 8862 for C4 plants. These numbers were derived from a limited number of 

observations, so the values of 𝛼 do not capture variability between plant species and seasons. Kooijmans et al. (2021) derived 

𝛼 from ecosystem observations of six sites throughout the growing season and found an average 𝛼 of 1616 ± 562 (C3 plants). 

Here, the standard deviation indicates large variability over time and between sites. The impact of 𝛼 on gCA will be described 

in Sect. 2.1.3. 175 

2.1.3 A new approach to describe gCA 

Each enzyme has its own kinetic characteristics, with activity generally increasing with temperature up to an optimum 

temperature and decreasing above this temperature. To derive a more realistic enzyme activity that also accounts for an 

optimum temperature, we propose a temperature response (f(Tcan)new) based on an equilibrium model that applies Michaelis-

Menten kinetics. A similar equilibrium model was previously used in COS soil models (Sun et al., 2015; Ogée et al., 2016) 180 

and is described as (Peterson et al. 2004; Daniel et al., 2010): 

𝑓(𝑇!79)9=I = 𝐴E ∙
	E+-. JKLM+

∆0-
12+-.

N

$OJKLP+
∆034
1 Q 5

2+-.
+ 5
234

RS
          (8) 

Here, three variables for enzyme kinetics are included: ∆Ha (kJ mol-1) is the activation free energy of the CA enzyme; ∆𝐻=T 

(kJ mol-1) is the enthalpy change when the enzyme converts from an activated to inactivated state; Teq (K) is the temperature 

at which activated and inactive enzymes’ concentrations are equal (Daniel et al., 2010; Sun et al., 2015). The factor AT 185 

normalizes Eq. (8) such that, equivalent to Eq. (7), f(Tcan)new=1 at Tcan = 298 K. We adopt AT as the value of f(Tcan)new-1 when 

T is equal to Teq. R is the universal gas constant (8.3145 J K-1 mol-1). Figure 1 shows that 𝛼 and the three kinetic parameters 

have different effects on the temperature response of gCA (Eq. 6). The calibration parameter 𝛼 affects the strength of gCA (Fig. 

1(a)) and its accuracy is therefore crucial for accurate COS flux simulations. With ∆Ha increasing (Fig. 1(b)), gCA decreases 
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(increases) for temperatures above (below) the optimal temperature. ∆Heq has the opposite effect, albeit with a different 190 

response to ∆Ha (Fig. 1(c)). Both ∆Ha and ∆Heq affect gCA depending on the temperature range. Finally, Fig. 1(d) shows that 

Teq determines the optimum of the temperature response curve without having impact on the magnitude of gCA. 

  

 
Figure 1: Calculated gCA as a function of canopy temperature for parameters (a) 𝛼, (b) ∆Ha, (c) ∆Heq, and (d) Teq from Eq. (6), (8). 195 
Each parameter is set to five different values given in the caption to investigate the response of gCA to temperature. While the target 
parameter changes, the other variables are fixed as 𝛼 = 1400 ∆Ha = 40 kJ mol-1 ∆Heq = 100 kJ mol-1, and Teq = 295 K which are initial 
values for Hyytiälä (see Sect. 2.3.2). 

 

2.2 Observation 200 

2.2.1 Observed variables 

In the optimization of gs and gCA, we used observed values of the variables required in the COS leaf uptake calculation (Eq. 

(1)), namely: COS ecosystem flux, COS soil flux, GPP, Ccos, temperature, and specific humidity. The observations were 

obtained at Hyytiälä in Finland during 2013-2017 (Kooijmans et al., 2017; Sun et al., 2018; Vesala et al., 2022) and at the 

Harvard Forest in the United States during 2012 and 2013 (Commane et al., 2015; Commane et al., 2016; Wehr et al., 2017). 205 

COS and GPP ecosystem fluxes were measured with the eddy-covariance (EC) technique. 
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For Hyytiälä, the EC processing steps were described by Kohonen et al. (2020) and Vesala et al. (2022) and GPP was derived 

from NEE using multi-year parameter fits (Kolari et al., 2014, Kohonen et al., 2022). The effect of storage in the canopy 

airspace was corrected by collocated COS profiles (Kooijmans et al., 2017; Kohonen et al., 2020). 210 

For the Harvard Forest, we used GPP derived from CO2 isotope EC measurements as reported in Wehr et al. (2016), and we 

used canopy COS uptake derived from COS EC measurements as reported in Wehr et al. (2017). 

In addition to the COS ecosystem fluxes, COS soil flux measurements were available for the 2016 growing season at Hyytiälä, 

and for the 2012 and 2013 growing seasons the Harvard Forest. 

To ensure data quality for the COS ecosystem flux, soil flux, GPP, and COS mole fraction, we used three-hourly averages 215 

each month for each observed variable. We removed outliers that fell out of the 25 to 75 percentile range in each three-hourly 

period. We only used data points when more than three data points were present at three-hourly time intervals in each month 

and when all variables required for the optimization were available. 

 

Figure 2 shows the resulting average diurnal cycle per month for COS ecosystem, soil, and vegetation fluxes (ecosystem flux 220 

minus soil flux). Note that positive fluxes indicate uptake. As the seasonal and diurnal variations in COS soil fluxes were small 

(Sun et al., 2018), we applied the monthly average diurnal cycle of the soil flux from 2016 to the other years (2013-2015 and 

2017).  
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 225 
Figure 2. Monthly diurnal variation of COS fluxes in 2016 at Hyytiälä (a) and 2012-2013 at Harvard Forest (b, c). Lines are median 
values, and filled areas show the 25 to 75 percentile range of the data. Black: COS ecosystem flux, blue: soil flux, red: vegetation 
flux estimated as ecosystem minus soil flux.  
 

  230 

2.2.2 Observation-based gs and gCA 

Observation-based gs was derived from sensible heat flux and evapotranspiration measurements using the Flux Gradient (FG) 

equations (Baldocchi et al., 1991; Wehr and Saleska, 2015; Wehr and Saleska, 2021). A key step in the derivation of gs is the 

estimation of transpiration from evapotranspiration. At the Harvard Forest, transpiration was estimated by an empirical 

equation established during times of minimal non-stomatal evaporation (i.e. a few days after rain, removing mornings with 235 

dew evaporation), as described in Wehr et al. (2017). At Hyytiälä, we simply restricted our analysis to periods of minimal non-

stomatal evaporation by eliminating data when the dew point was equal to or greater than the air temperature or when the 

accumulated precipitation for the past two days was more than 0.01 mm. 

 

The FG approach leads to significant uncertainties for nighttime data because the leaf to air-water vapor gradient is too small 240 

under stable conditions (Wehr et al., 2017). We thus excluded nighttime gs when the values were smaller than 0.05 mol m-2 s-
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1. To reduce the effect of random noise on gs, we used an average diurnal cycle (based on three-hourly medians) for each 

month.  

 

Observation-based gCA was extracted by rewriting Eq. (1):  245 

𝑔/> = '/+6!
U+6!

− $.&'
(!
− $.)*

("
)
+$
	           (9) 

Here we used the observation-based gs from the FG equation as discussed above and filtered observations of Ccos and Fcos. 

Additionally, we used simulated gb from SiB4, as we don’t have observed gb available and as the value of gb only has a minor 

effect on Fcos, which will be further discussed in Sect. 3.1. Although outliers of observed gs, Ccos, and Fcos were removed 

already, a significant number of outliers in gCA appeared because of error propagation. We removed additional outliers outside 250 

the 25–75 percentile range of the gCA dataset. 

2.3 Optimization 

2.3.1 Procedure 

In the optimization steps, we minimized a quadratic cost function J(x) based on Bayes' theorem (Tarantola and Vallette 1982, 

Enting et al., 1993): 255 

𝐽(𝑥) = (8+8-))

:s-)
+ VW+2(8)X

)

:s7)
	           (10) 

Here, x represents the state, xa the prior settings of the state, and sa the error assigned to the parameters. In the second term, y 

represents the observations and H(x) the model evaluation using the state x. The error sy represents the observational error. 

The details of sa and sy will be described in Sect. 2.3.2 and Sect. 2.3.3, respectively. 

 260 

To optimize the gs and gCA parameters, we intend to use the information from GPP and COS leaf uptake measurements 

simultaneously. Thus, we propose a two-step approach in combination with an iterative minimization of the cost functions, as 

outlined in Fig. 3. In the first step, we optimally estimate gs parameter b1 by minimizing J(x) which sums GPP differences 

between estimation (H(b1) in Eq. (10)) and observation. We select to use GPP observations in the optimization over gs because 

GPP can be used to evaluate b1 and b0 using the BB model. Moreover, observed GPP leads to more accurate b1 values, because 265 

of uncertainties in GPP are smaller compared to observation-based gs. Here, we use only positive GPPobs values (uptake) 

because the BB model is only applicable in daytime conditions. The estimated GPP (H(b1) in Eq. (10)) is calculated by 

rewriting the BB model using observation-based gs (Sect. 2.2.2), modelled RH at the leaf surface (FLH), and simulated CO2S 

from SiB4. Hereinafter the estimated GPP by the BB model is called GPPBB : 

𝐺𝑃𝑃DD =
((!+B,∙1>Z∙U18)	/0)!

B5∙U90
           (11)  270 
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In the second optimization step, we optimize the b0 and gCA parameters (a in Eq. (6) and Teq in Eq. (8)). These parameters are 

optimized by minimizing the differences between calculated and observed FCOS. FCOS is calculated with three conductances 

using Eq. (1). Specifically, gs is estimated with Eq. (2) using the optimized b1 from step 1. Here, we used GPPSiB4 to satisfy 

our aim of optimizing the SiB4 model parameters. Note that GPPBB from Eq. (11) cannot be used here, because it would make 275 

the estimated gs equal to observation-based gs. Based on sensitivity studies in Appendix A, we decided to select 𝛼, b0, and Teq 

as target parameters and to fix ∆Heq and ∆Ha at 100 kJ mol-1 and 40 kJ mol-1, respectively.  

 

In the optimization procedure, we specifically exploit the fact that the nighttime COS flux carries information about nighttime 

gs through the parameter b0. The alternative, i.e. optimizing b0 already in step 1, would ignore the information of nighttime gs 280 

brought by COS flux observations. Consequently, however, we have to iterate the procedure several times to reach 

convergence. Figure 3 specifies which observations are used in which step (gs, GPPobs, FCOS, obs, Ccos highlighted as grey) and 

which variables are simulated by SiB4 (e.g. Tcan, FLH, GPPSiB4, CO2S, gb).  

 
Figure 3. Flow chart of the procedure to optimize COS leaf uptake’s parameters. The procedure has two steps: (1) Optimize b1 by 285 
minimizing deviations between GPPBB and observations, (2) Optimize b0, 𝜶,	 and Teq by minimizing deviations between modelled 
and observed COS uptake. Variables highlighted in grey are from observations, and the other variables are estimated from SiB4.  
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We applied the Simplicial homology global optimization (SHGO) from the SciPy python library to minimize the cost functions. 

SHGO is appropriate for solving non-continuous, non-convex and non-smooth functions (Endres et al., 2018). SHGO also 290 

allows the definition of a valid parameter range, as will be discussed in Sect. 2.3.2 and in Appendix A. 

 

The Vmax of RuBisCo was found to vary over the phenological stage and per PFT (Woodward et al., 1995; Wolf et al., 2006; 

Kattge et al., 2009; Walker et al., 2014), which also affects the calibration factor 𝛼. Therefore, we optimized 𝛼 for each PFT 

and each phenological stage. In contrast, b0, b1, and Teq were only separately determined for the different PFTs, assuming local 295 

characteristics for each PFT.  

2.3.2 Initial parameters and prior errors 

The first term in the cost function (Eq. (10)) ties the values of the parameters to realistic values. We additionally confined the 

parameter values within realistic physical ranges using the SHGO algorithm. Initial parameters and prior errors were chosen 

based on thresholds outlined in Appendix A, and they will be compared with optimized results in Sect. 3.3. The variation in 300 

the resulting cost function shows distinct differences between Hyytiälä and Harvard Forest, which reinforces our strategy to 

optimize parameters for each station separately.  

2.3.3 Observation Errors 

To quantify the observational errors sy, we first calculated the three-hourly average coefficient of variation (CV) relative to 

the mean of the observed COS vegetation flux in each phenological stage and observed GPP for the entire growing season. 305 

Figure 4 shows the results of observational errors. The GPP error is applied in step 1 and the COS leaf uptake error is used in 

step 2 in the optimization. We multiplied the CV with the mean in each phenological stage. Here, we classify the error of the 

COS leaf uptake in each phenological stage because we optimized 𝛼 in each stage. In Fig. 4, we found that the errors differ 

slightly per phenological stage. In Hyytiälä, the errors are larger in the growth stage compared to the maturity stage, possibly 

due to the unstable weather conditions in growth stage. The COS leaf uptake error is larger at both stations during nighttime 310 

than during daytime. A potential reason can be the relatively higher uncertainty in the eddy covariance method during stable 

nighttime conditions.  
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Figure 4. Distribution of the observation error in the growth (a) and maturity stages (b) for COS leaf uptake and all stages for GPP 315 
(c). The upper panel is the errors for Hyytiälä (HYYT) and the lower panel is for Harvard Forest (HVFM).  
 
 

2.4 SiB4 simulations 

We utilized several simulated variables from SiB4 in our optimization. Specifically, calculated GPPSiB4, gb, Tcan, Vmax of 320 

RuBisCo, functions FLH, FRZ and FLC were used to calculate COS leaf uptake. In addition, LAI and CO2S were used to estimate 

GPPBB. Furthermore, we introduced the new temperature function (f(Tcan)new) in the gCA calculation (Sect. 2.2.3) to calculate 

COS leaf uptake, and excluded P Psfc-1 and Tcan T0-1 from Eq. (3) due to minor impacts of these factors for these ecosystems. 

 

To simulate the SiB4 data at the two stations, we used the Modern-Era Retrospective Analysis for Research and Application, 325 

version 2 (MERRA-2) (Gelaro et al., 2017) as meteorological driver data. Only air temperature and leaf specific humidity were 

taken from observations. To initialize the carbon pools, we spun up the model to equilibrate the pools. The spin-up was 

performed from 2000 to 2010 with ten iterations. Ambient CO2 mole fractions were prescribed at 370 ppm. 

 

To estimate the global impact of our findings, we performed a global simulation to evaluate COS leaf uptake estimated by the 330 

updated gs and gCA values. The atmospheric COS mixing ratio Ccos were taken from optimizations using the TM5 chemical 

transport model (Ma et al., 2021; Kooijmans et al., 2021). As we found that all target parameters differ per PFT in Sect. 2.3.2, 

we applied these parameters only to ENF and DBF. However, to confirm the f(Tcan)new effect on COS leaf uptake, we applied 

f(Tcan)new to all PFTs with averaged optimum Teq from the two stations (303 K) and fixed ∆Heq (100 kJ mol-1) and ∆Ha (40 kJ 

mol-1) as described in Appendix A. The soil flux is estimated following Ogée et al. (2016) as implemented by Kooijmans et 335 

al. (2021).  
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To examine the humidity impact in SiB4, we performed a simulation with and without the lower threshold for FLH of 0.7 for 

ENF (see Sect. 2.1.2). Additionally, we replaced the RH at leaf level calculated by SiB4 by RH measured above the canopy. 

Results will be shown in Sect. 3.5.1. we simulated the global COS leaf uptake without the 0.7 threshold of FLH for ENF. 340 

 

2.5 Error reduction and statistics 

To determine the uncertainty in the optimized model parameters, we employed a Monte Carlo optimization procedure as 

described in detail in Appendix B. In short, 100 optimizations were performed. In each optimization, we perturbed the state 

with random Gaussian noise on the state and the observations (Chevallier et al., 2007; Bosman and Krol, 2022), according to 345 

the errors in the state and observations (Fig. 4). Posterior error statistics will be reported in Table 3.  

 

Additionally, we quantified the performance of the optimization by calculating the root mean square errors (RMSEs), mean 

bias errors (MBEs), and the chi-square metric (𝜒2). The 𝜒2 metric quantifies the average deviation from the observations, 

expressed in sy units. Thus, 𝜒2=1 signal that, on average, the model fits the observation within 1s indicating a realistic error 350 

setting. 

 

3. Results and discussion 

3.1 Impact of each conductance 

Figure 5 investigates which conductance contributes most to the total conductance (gt). In these plots, all conductances are 355 

prior values before optimization. gs and gCA were derived from observations (Sect. 2.2.2). We find that gt is determined mainly 

by gCA and gs. During daytime, gCA is the lowest conductance in almost all months in Hyytiälä but is comparable to gs in 

Harvard Forest. The value of gb is the highest and hence has the smallest impact on gt. This finding supports this study’s 

proposed two-step optimization process to improve gs and gCA (see Sect. 2.3).  

 360 
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Figure 5. Monthly averaged diurnal variation of conductances (black: gt, red: gs orange: gCA, blue: gb,) in Hyytiälä (HYYT) and 
Harvard Forest (HVFM). gb is estimated by SiB4, gs and gCA are calculated based on observations as described in Sect. 2.2.2. Negative 
values are not displayed. The total conductance gt is calculated from gb, gs, and gCA according to Eq. (1). 

3.2 Optimization performance 365 

We obtained optimized parameters after five iterations. By design, the optimized results reduced the deviations between model 

and observation of GPP and COS leaf uptake. This improvement is quantified by statistical indexes in Tables 1 and 2, 

respectively. GPPBB is improved compared to the prior (Table 1), with a slight RMSE reduction from 5.51 to 4.87 

𝜇𝑚𝑜𝑙	𝑚+:	𝑠+$ and a MBE reduction from 0.69 to 0.04 𝜇𝑚𝑜𝑙	𝑚+:	𝑠+$ (Table 1). The 𝜒2 was reduced from 0.88 to 0.80. The 

improvement in GPPBB reflects the effect of optimizing b1 and b0 in the BB model. 370 

 
Table 1. RMSE, MBE, and 𝜒2 for the estimation of GPPBB in daytime using prior stomata parameters (Pri) and posterior parameters 
(Post). 

Type RMSE (𝜇𝑚𝑜𝑙	𝑚+:	𝑠+$) MBE (𝜇𝑚𝑜𝑙	𝑚+:	𝑠+$) 𝜒2 

Prior (Pri) 5.51 0.69 0.88 
Posterior (Post) 4.87 0.04 0.80 

 

The posterior result of COS leaf uptake (“Post” in Table 2) shows a slight improvement compared to the original state variables 375 

with f(Tcan)new in RMSE (from 8.23 to 6.43 𝑝𝑚𝑜𝑙	𝑚+:	𝑠+$ ) but significantly improved MBE (from -4.65 to -0.34 

𝑝𝑚𝑜𝑙	𝑚+:	𝑠+$, see “Post” in Table 2). The large RMSE reflects the typically large random noise of COS flux observations 

(Kooijmans et al., 2016; Kohonen et al., 2020). However, 𝜒2 drops from 1.01 to 0.61, confirming that the optimization properly 

reduced the mismatch between observations and the model within the error statistics. Figure 6 compares the optimized COS 

leaf uptake to the original SiB4 simulation in scatter plots. Where the original simulation with f(Tcan)SiB4 and previous state 380 
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variables was often underestimating the observations, the optimized results resemble the observations over a larger range of 

the data.    

 
Table 2. Same as Table 1 but for COS leaf uptake, as applied in the original f(Tcan)SiB4 simulation with original conductance 
parameters (Org), with the new temperature response function f(Tcan)new using the initial gs and gCA parameters (Pri), with optimized 385 
parameters (Post). Here, state parameters relevant for gCA are 𝛼 and Teq. The state parameters relevant for gs are b0 and b1.  
 

Type gCA f(T) 
RMSE 

(𝑝𝑚𝑜𝑙	𝑚+:	𝑠+$) 
MBE 

(𝑝𝑚𝑜𝑙	𝑚+:	𝑠+$) 𝜒: 

Previous SiB4 (Org) f(T)SiB4 8.23 -4.65 1.01 
Prior (Pri) 

f(T)New 
6.71 1.32 0.66 

Posterior (Post) 6.43 -0.34 0.61 
 

 
Figure 6. Scatter plots between observed and estimated COS leaf uptake from original parameters with f(Tcan)SiB4 (left) and 390 
optimized parameters with f(Tcan)new (right). The colors represent the density of data.  

 

3.3 Optimized parameters 

The optimized parameter values with posterior errors are listed in Table 3. The optimized SiB4 parameters differ between the 

stations, likely because the dominant PFT and the climate conditions differ between Hyytiälä and Harvard Forest. For instance, 395 

the optimized Teq is smaller in Hyytiälä (295 K) than in Harvard Forest (311 K). Thus, the optimum temperature reflects the 

temperature dependence of the enzyme and its adaptation to temperature (Lee et al., 2007). This indicates that regional climate 

information is important for the correct estimation of gCA. The range of Teq can be compared with other COS soil models. For 
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instance, Ogée et al. (2016) used the same prescribed value for ∆Ha and they adopt Teq as 298 K, which is in the middle of our 

optimized temperatures for Hyytiälä and Harvard Forest.  400 

 

The 𝛼, which is the enzyme activity of CA relative to the Vmax of RuBisCo, is reduced from 1400 to 1316 (in growth) and 1331 

(in maturity) in Hyytiälä. In Harvard Forest, 𝛼 values are larger than the original values in SiB4 for leaf-out (1798), growth 

(1740), and maturity (2224) phenological stages. Here it should be noted that the change of 𝛼 should be interpreted in 

combination with the new temperature function f(Tcan)new of gCA. Since we only optimize Teq for two PFTs (with identical and 405 

fixed values for ∆Ha and ∆Heq) and Teq only shifts f(Tcan)new (Fig. 1), the magnitude of gCA is primarily determined by parameter 

𝛼. Since the observed COS leaf uptake in Harvard Forest is larger than in Hyytiälä, larger values of 𝛼 are derived for Harvard 

Forest. The different values of 𝛼 derived for different phenological stages will be discussed in Sect. 3.4.  

 

The optimized results of the BB model parameters b0 are similar but b1 values are mostly higher than the original values used 410 

in SiB4. The parameter b0 for Hyytiälä (0.013 mol m-2 s-1) and Harvard Forest (0.007 mol m-2 s-1) are higher and smaller 

compared to the initial value (0.010 mol m-2 s-1). For the optimized BB model parameter b1, the empirical slope between gs 

and GPP, we find a considerable increase in Hyytiälä (16.38) and a slight increase in Harvard Forest (11.43), compared to the 

prescribed SIB4 value of 9.0. Our optimized values are larger than the values presented in a review paper for the evergreen 

gymnosperm tree which showed b1 = 6.8 and are similar to b1 = 8.7 for the deciduous angiosperm tree (Miner et al., 2017). 415 

As will be discussed in Sect. 3.5, the higher slope in Hyytiälä is possibly related to an incomplete separation of observed 

transpiration rates from the latent heat flux. 

 

Concerning the estimated errors in b0, b1, and Teq, we find that errors have been reduced significantly compared to the prior 

error range. This indicates that the available data constrain these parameters well. Only the 𝛼 parameters of Harvard forest are 420 

less well constrained. Also, the skill of the optimization to independently optimize the parameters is high, as quantified by the 

posterior covariances that are presented in Appendix B.  

 
Table 3. Original (Org) and optimized (Post) state vectors for Hyytiälä and Harvard Forest in different phenological stages as defined 
by SiB4. Values of Posterior in parenthesis indicates posteriori errors. Detailed error reduction is described in Appendix B. 425 

Approach State vector 
Hyytiälä Harvard Forest 

Growth Maturity Leaf-out Growth Maturity 

Previous 
SiB4 
(Org) 

Vmax of RuBisCo 
(𝜇mol m-2 s-1) 

52 54 96 94 92 

𝛼 (-) 1400  
b0 (mol m-2 s-1) 0.01 

b1 (-) 9.0 
Prior 𝛼 (-) 1400 (± 1000)  2000 (± 1000) 
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(Pri) 
 

b0 (mol m-2 s-1) 0.02 (± 0.02)  0.01 (± 0.02) 
b1 (-) 17 (± 5)  12 (± 4) 
𝑇=T (K) 295 (± 20) 310 (± 20) 

Posterior 
(Post) 

𝛼 (-) 
1316 

(± 509) 
1331 

(± 574) 
1798 

(± 527) 
1740 

(± 494) 
2224 

(± 613) 

b0 (mol m-2 s-1) 
0.013 

(± 0.009) 
0.007 

(± 0.006) 

b1 (-) 
16.36 

(± 2.87) 
11.43 

(± 1.98) 

𝑇=T (K) 295 
(± 11) 

311 
(± 10) 

 

3.4 Optimized temperature response 

The optimized parameters show significant improvement in temperature response of the COS leaf uptake. Figure 7 presents 

the temperature dependency of gCA and COS leaf uptake from the original and optimized simulations output and observations. 

The observed COS leaf uptake and pseudo-observations gCA (details in Sect. 2.2.2) in Hyytiälä show a decrease above 20 ℃. 430 

As stated before, the original f(Tcan)SiB4 describes the CA enzyme activity as an exponentially increasing response to 

temperature, which does not resemble the observations. The optimized gCA and COS leaf uptake follow the temperature 

dependence of the observation more closely than the original f(Tcan)SiB4. In Harvard Forest, an underestimated bias is shown at 

a lower temperature under 10 ℃, mostly corresponding to nighttime. This underestimate is related to the uncertainty in 

nighttime gS and the small data volume at low temperatures (details in Sect. 2.2.2). 435 

 

In the upper panel of Fig. 7, we see the different roles of 𝛼 and f(Tcan)new in the improvement of gCA response to temperature as 

the red and orange lines. Without the 𝛼 correction applied (Posterior with 𝛼 = 1400; orange line), the optimized gCA resembles 

the fluctuations in the observations but there remains a bias in the amplitude. In contrast, when the optimized value of 𝛼 is 

included, the amplitude of gCA is improved (red line). Due to the different optimized 𝛼 values in each phenological stage, the 440 

improvement of the red line shows the appropriate temperature responses. For instance, in Harvard Forest, 𝛼 in leaf-out and 

growth (1798 and 1740) mostly corresponds to lower temperatures. At these stages, the impact on gCA is smaller because gCA 

is smaller than that at high temperature. At high temperatures there are more significant corrections of gCA, which correspond 

to the maturity stage value of 𝛼 (2224).  

 445 

The temperature responses of gCA and COS leaf uptake now show an optimum temperature in Hyytiälä, characterized by the 

parameter Teq (T = 295 K (22 ºC)). In addition, the improvement is significant at temperatures both below and above the 

optimum temperature in Hyytiälä. The optimized gCA is larger throughout the whole temperature range in Harvard Forest, 

https://doi.org/10.5194/egusphere-2022-1305
Preprint. Discussion started: 5 December 2022
c© Author(s) 2022. CC BY 4.0 License.



19 
 

without an optimum within the measured range. This corresponds to Teq = 311 K (38 ºC), a value substantially higher than 

found at Hyytiälä.  450 

 

 
Figure 7. Temperature dependency on gCA (a) and COS leaf uptake (b) in Hyytiälä (HYYT, left) and Harvard Forest (HVFM, 
right). The lines are medians and the filled area represents the 25 to 75 percentiles of each temperature range with 3 ºC intervals. 
Black: data based on observations; blue: previous parameters with f(Tcan)SiB4; red: optimized parameters with f(Tcan)new and gs 
parameters of the BB model; orange: same as the red line but now 𝛼 is prescribed with original value (1400) and not optimized. 
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3.5 Application in SiB4 

3.5.1 Stationary monthly diurnal variation 455 

Figures 8 and 9 display the SiB4 simulation results obtained with the original and optimized parameterizations compared to 

observations for Hyytiälä and Harvard Forest, respectively. As a result of the optimization, the monthly diurnal variation of 

the optimized COS vegetation flux, gs, and gCA are closer to observations than the original SiB4 simulations. The observed 

COS leaf uptake and gs show diurnal and seasonal fluctuations at both measurement sites, with the highest values around 

midday and in summer. For gCA, we observe a weak diurnal cycle throughout the year, and higher daytime maximum values 460 

in summer, driven by the temperature dependence of CA.  

 

In Hyytiälä, COS leaf uptake in the original SiB4 model was underestimated during daytime in all months. The fluxes increased 

too slowly in the morning for all months (Fig. 8(a)). These issues are solved by optimizing the BB model parameters and 

temperature response function. In the case of gs (Fig. 8(b)), the original SiB4 simulation showed the correct timing of the 465 

increase and decrease of gs in the morning and afternoon, but underestimated the peak daytime values. The optimized model 

now better resembles the daytime gs values.  

 

However, the model still overestimates gs in the late afternoon of summer months at Hyytiälä. We speculate that one of the 

reasons lies in an inaccurate humidity, or humidity stress in SiB4. Figure 10 shows a diurnal cycle of gs simulations averaged 470 

from April to August with different choices on how the humidity stress factor is treated (Sect. 2.5). When the default 0.7 

threshold of humidity stress (FLH) in ENF is applied in SiB4, gs is overestimated in the afternoon in Hyytiälä (blue dotted line). 

When we removed the minimum threshold of FLH for ENF, gs simulations during mid-day are improved (note that the threshold 

was only implemented for ENF, not for DBF, and thus the blue dotted line is not visible for Harvard Forest in Figure 10). 

However, SiB4 still tends to overestimate gs in the morning and late afternoon. In contrast, when we base the gs calculation on 475 

the observed RH above the canopy, the diurnal cycle is better simulated (orange dashed line). This implies that SiB4 has the 

tendency to underestimate the humidity stress in the late afternoon when converting observed specific humidity above the 

canopy to humidity at leaf surface level.  

 

The optimized model still significantly underestimates gs at Hyytiälä in April, September, and October (Fig. 8b). This might 480 

indicate that we did not properly separate stomatal transpiration rates from the observed latent heat flux. The simulated mean 

ratios of evaporation to evapotranspiration in these three months are 66 %, 60 %, and 95 %, respectively, and these values are 

higher compared to the other months (43 to 53 %). Thus, we speculate that the observed evapotranspiration does not solely 

represent stomatal transpiration in these months, leading to overestimated gs in the observation.  

 485 
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Figure 8(c) shows that the optimized gCA often resembles the observed daytime gCA better than the original SiB4 simulation. 

Only in April is the optimized gCA overestimated in Hyytiälä. Again, this can likely be explained by the underestimated gs, 

which is used to derive pseudo-observations of gCA (see Sect. 2.2.2). 

 
Figure 8. Monthly-diurnal cycle of COS leaf uptake (a), gs (b), and gCA (c) in Hyytiälä (HYYT) from 2012 to 2016. Data 
include observations (black dots), the original SiB4 model with f(Tcan)SiB4 (blue solid), and SiB4 with optimized gs and gCA 
parameters with f(Tcan)new (red solid). The filled area corresponds to the 25-75 percentile of the data in each three-hourly 
interval of each month.   

 490 

At the Harvard Forest, the optimized SiB4 model generally simulates the magnitude of the COS leaf uptake well (Fig. 9(a)). 

The model overestimates the COS leaf flux only in the afternoon during the summer months. However, gs values are generally 

overestimated and SiB4 simulates two peaks during daytime, indicating humidity stress only shortly at mid-day. However, in 

reality, the humidity stress likely remains a limiting factor in the afternoon under conditions with high vapor pressure deficit 

(VPD). Observations show that gs typically peaks in the early morning and decreases in the afternoon due to higher afternoon 495 

VPD. Figure 10 shows that, similar to the Hyytiälä simulation, the afternoon decrease in gs at Harvard Forest is better simulated 

when we use the RH observed above the canopy. In Fig. 9(c), the optimized gCA during the daytime agrees well with the 

pseudo-observations, except for several drops or peaks in July and October, likely caused by observational errors or uncertainty 

of the observed gs.  
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Figure 9. Same as Fig. 8 but for Harvard Forest (HVFM). 

 500 
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Figure 10. Average diurnal cycle of gs in Hyytiälä (HYYT) and Harvard Forest (HVFM) from April to August. Data include 
observations (black solid), SiB4 simulation with optimized parameters with minimum bounds of FLH (blue dotted), without bounds 
(red dotted), and with observed RH in air (orange dashed). Note that the blue and red lines overlap for HVFM. 

3.5.2 Global application 505 

Figure 11 shows the biosphere COS flux (soil and the optimized vegetation flux) using the optimized parameters and the 

difference with the original SiB4 model. In general, the COS biosphere uptake is lower in the tropics and higher towards high 

latitudes in the SiB4 model with optimized parameters. We find the same patterns for all seasons. The differences are consistent 

with canopy temperature variations. When temperatures are below 3 ℃ (boreal) and 3-25 ℃ (temperate), the optimized COS 

biosphere uptake is larger compared to the original simulation, corresponding with higher gCA values calculated by the new 510 

temperature function in Fig. 7. In contrast, temperatures above about 25 ℃ result in lower COS biosphere uptake in the 

optimized run, reflecting the reduced enzyme activity at high temperatures in the new temperature response function. Note 

here that we also found that the temperature response of CA is different in different climate zones. Since we do not have 

observations in the tropics, the calculated lower uptake in the tropics remains very uncertain. The higher uptake at high latitudes 

and lower uptake at the tropics are nevertheless consistent with inverse modelling results presented in Ma et al. (2021) and 515 

would help towards closing the COS budget. Still, however, the temperature response function and BB parameters are now 

based on measurements of only two sites in only two biomes. With more measurements over different vegetation types, these 

parameters could also be optimized for a wider range of ecosystems. 
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 520 
Figure 11. Spatial distribution of optimized COS biosphere fluxes (a), the difference between optimized and original COS biosphere 
flux (b), and canopy temperature (c). All were estimated by the SiB4 model.   

 

4. Conclusion 

To simulate more accurate COS leaf uptake in the SiB4 model, we have proposed a new temperature function f(Tcan)new for the 525 

CA enzyme and have optimized gs and gCA parameters using observations in ENF (Hyytiälä) and DBF (Harvard Forest) 

systems. The optimized model reduced the MBE from -4.65 to -0.34 𝑝𝑚𝑜𝑙	𝑚+:	𝑠+$ and reduced 𝜒2 from 1.01 to 0.61.  

 

The new temperature function is characterized by an optimum temperature of 295 K (22 °C) (Hyytiälä) and 311 K (38 °C) 

(Harvard Forest) with 𝛥Ha = 40 kJ mol-1. The new function now considers an optimum temperature for enzyme activity, 530 

contrary to the initial temperature function used in SiB4 where an exponential increase of the temperature function was adopted 

from the RuBisCo enzyme activity. The new temperature response increases gCA, and thereby the COS flux when the 

temperature is below the optimum temperature (mostly at high latitudes) and decreases the COS uptake at higher temperatures. 

(e.g. close to the equator). Globally, these modifications help to close gaps in COS budget that were identified in earlier studies. 
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In this study, we have interpreted the decreasing gCA at higher temperatures as an optimum enzyme activity with the widely 535 

applied assumption that there are no COS emissions in leaves. However, COS emissions have recently been reported at high 

temperatures (Maseyk et al., 2014, Commane et al., 2016, Gimeno et al., 2017). To determine reasons for reducing COS leaf 

flux and internal conductance at high temperatures, it will be necessary to analyze the possibility that leaf emissions exist in 

observations in the future.  

 540 

We have optimized the BB model parameters for which we took advantage of the characteristics that the nighttime COS flux 

informs about nighttime gs, and thus the parameter b0. The improved correspondence between model and observations shows 

that COS observations can help to constrain the relation between gs and GPP better. In addition, we showed that SiB4 

underestimates the leaf humidity stress under conditions where high VPD should limit gs in the afternoon. This can be improved 

with more accurate relative humidity values and removing the threshold of humidity stress that was implemented in SiB4 545 

specifically for ENF. 

 

The optimized parameters show different values depending on the PFT. Therefore, extending our approach with more 

observations in different climate zones and over different PFTs will help obtain accurate COS fluxes on a global scale. This 

approach would reduce the uncertainty in the global COS budget and provide additional constraints on GPP.   550 

Appendix A. State variable error settings   

To evaluate the impact of the various parameters in f(Tcan)new in the optimization as state variables, we implemented a sensitivity 

test of a total cost function combined with cost1 and cost2, excluding the background term in the cost function equation (Eq. 

(10)). Fig. A1 shows the shape of the cost function when one parameter is varied within an acceptable range, while the other 

parameters are fixed (Daniel et al., 2010; Sun et al., 2015) (details in Sect. 2.3.2). Based on the shape of the cost function, we 555 

used a pragmatic approach to select realistic parameter ranges. Variable values that push the cost function beyond 3.45 

(Hyytiälä) and 5.14 (Harvard Forest) were considered outside the allowed physical range (red lines in Fig. A2). These 

thresholds are determined by the cost function value assuming that the modelled H(x) is the 75-percentile value of observation 

in three-hourly observation in each month. Variables 𝛼, b0, b1, and Teq (Fig. A1(a), (b), (c), and (f)) have more significant 

impacts on the cost function than ∆Ha (Fig. A1(d)) and ∆Heq (Fig. A1(e)). Overall, costs in Harvard Forest are higher than in 560 

Hyytiälä, likely because DBF has larger diurnal and seasonal variations in the observed fluxes than ENF. We set the 

optimization range as an initial value ± 1.5 state error to apply SHGO algorithm.  

 

Figure A2 shows contour diagrams of the cost function as a function of Teq and other parameters of f(Tcan)new. The gradient is 

the cost function indicates the relative importance of each parameter. ∆Heq does not interact with Teq, but ∆Ha is inverse 565 
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proportional to Teq to minimize the cost. The cost function is most sensitive to variations in Teq and therefore we decided to fix 

∆Heq and ∆Ha at 100 kJ mol-1 and 40 kJ mol-1, respectively and to base our optimization on the state variables 𝛼, b0, b1 and Teq.  

 

 
Figure A1: Cost function values plotted against the value of the state vectors elements in Hyytiälä (solid line) and Harvard Forest 570 
(dotted line). The red lines indicate a criteria cost calculated by H(x) as the 75-percentile value of every three-hourly observation in 
each month. While the target parameter changes, the other variables are fixed as 𝛼 = 1400 (Hyytiälä), 2000 (Harvard Forest), ∆Ha 
= 40 kJ mol-1 ∆Heq = 100 kJ mol-1, and Teq = 295 K (Hyytiälä), 310 K (Harvard Forest), b0 = 0.02 (Hyytiälä), 0.01 (Harvard Forest), 
and b1 = 17 (Hyytiälä), 12 (Harvard Forest). These values were decided where the cost has minimum. 

 575 
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Figure A2: Contour diagram of the cost function value as a function of Teq and (a) ∆Heq and (b) ∆Ha in Hyytiälä (left) and Harvard 
Forest (right). While the target parameter changes, the other variables are fixed as Figure A1.   

Appendix B. Posterior uncertainties   

To evaluate the ability of constrain the parameters, we performed an ensemble optimization with 40 different members. In 580 

each optimization, noise was added to the parameters (𝜀a) and to the observation (𝜀y). Random perturbations were drawn from 

a normal distribution with zero mean and standard deviations 𝜎a for the state parameters and 𝜎y for the observations. The new 

cost function of an individual optimization thus becomes: 

𝐽(𝑥) = (8+8-O[-))

:s-)
+

MWO[7+2(8)N
)

:s7)
	           (12) 
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We optimized each ensemble with the same observations (GPP and COS leaf uptake) and state variables but added noise to 585 

each ensemble member (Chevallier et al., 2007). Subsequently, we calculated the posterior uncertainty as the one-standard 

deviation of the posterior distribution of the optimized parameters. 

 

Figure B1 shows the prior and posterior distribution of the parameters at the two stations. All posterior parameters show 

considerable reductions of variations (error), with optimized values that are listed in the main text, Table 3.  590 

 

Additionally, we calculated a correlation matrix between the posterior state parameters at the two stations, which is shown in 

Fig. B2. Overall, each parameter does not interact significantly (covariances < 0.7) except for parameters b0 and b1. b0 and b1 

influence the gs calculation in opposite ways. For example, a larger optimized value of b0 corresponds to a smaller slope b1.  

  595 

Figure B1. Error reduction of state variables in two stations (Hyytiälä (HYYT) and Harvard Forest (HVFM)). The red lines 
represent median values, and the boxes represent errors. Column ‘Pri’ shows the initial value and state error. Column ‘Post’ 
represents the mean of the optimized state variables and the corresponding standard deviation. 𝛼LO, 𝛼G, 𝛼M indicate 𝛼 in each 
phenological stage (leaf-out, growth, and maturity, respectively).    
 600 
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Figure B2. Covariance matrix for all state variables in Hyytiälä (HYYT) and Harvard Forest (HVFM).  
 605 
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