13 Apr 2022
 | 13 Apr 2022

Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends

Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Raphaël Hébert, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng

Abstract. A mismatch between model- and proxy-based Holocene climate change, known as the Holocene conundrum, may partially originate from the poor spatial coverage of climate reconstructions in, for example, Asia, limiting the number of grid-cells for model-data comparisons. Here we investigate hemispheric, latitudinal, and regional mean time-series as well as anomaly maps of pollen-based reconstructions of mean annual temperature, mean July temperature, and annual precipitation from 1676 records in the Northern Hemisphere extratropics. Temperature trends show strong latitudinal patterns and differ between (sub-)continents. While the circum-Atlantic regions in Europe and eastern North America show a pronounced mid-Holocene temperature maximum, western North America shows only weak changes and Asia mostly a continuous Holocene temperature increase but with strong latitudinal differences. Likewise, precipitation trends show certain regional peculiarities such as the pronounced mid-Holocene optimum between 30 and 40° N in Asia and Holocene increasing trends in Europe and western North America which can all be linked with Holocene changes of the regional circulation pattern linked to temperature change. Given a background of strong regional heterogeneity, we conclude that the calculation of global or hemispheric means which initiated the Holocene conundrum debate should focus more on understanding the spatio-temporal patterns and their regional drivers.

Ulrike Herzschuh et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-127', Anonymous Referee #1, 03 Jun 2022
  • RC2: 'Comment on egusphere-2022-127', Anonymous Referee #2, 08 Aug 2022

Ulrike Herzschuh et al.

Data sets

Northern Hemisphere temperature and precipitation reconstruction from taxonomically harmonized pollen data set with revised chronologies using WA-PLS and MAT (LegacyClimate 1.0) Herzschuh, Ulrike; Böhmer, Thomas; Li, Chenzhi; Cao, Xianyong

Ulrike Herzschuh et al.


Total article views: 923 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
649 258 16 923 12 13
  • HTML: 649
  • PDF: 258
  • XML: 16
  • Total: 923
  • BibTeX: 12
  • EndNote: 13
Views and downloads (calculated since 13 Apr 2022)
Cumulative views and downloads (calculated since 13 Apr 2022)

Viewed (geographical distribution)

Total article views: 837 (including HTML, PDF, and XML) Thereof 837 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 26 Mar 2023
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1676 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global means.