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 55 

Abstract. A mismatch between model- and proxy-based Holocene climate change, known as the 56 

´Holocene conundrum´, may partially originate from the poor spatial coverage of climate reconstructions 57 

in, for example, Asia, limiting the number of grid cells for model-data comparisons. Here we investigate 58 

hemispheric, latitudinal, and regional mean time-series as well as time-slice anomaly maps of pollen-59 

based reconstructions of mean annual temperature, mean July temperature, and annual precipitation 60 

from 1908 records in the Northern Hemisphere extratropics. Temperature trends show strong latitudinal 61 

patterns and differ between (sub-)continents. While the circum-Atlantic regions in Europe and Eastern 62 

North America show a pronounced Mid-Holocene temperature maximum, Western North America 63 

shows only weak changes and Asia mostly shows a continuous Holocene temperature increase. 64 

Likewise, precipitation trends show certain regional peculiarities such as the pronounced Mid-Holocene 65 

precipitation maximum between 40 and 50°N in Asia and Holocene increasing trends in Europe and 66 
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Western North America, which can all be linked with Holocene changes of the regional circulation pattern 67 

responding to temperature change. Given a background of strong regional heterogeneity, we conclude 68 

that the calculation of global or hemispheric means, which initiated the ´Holocene conundrum´ debate, 69 

should focus more on understanding the spatio-temporal patterns and their regional drivers.  70 

 71 

1 Introduction 72 

Previous comparisons of proxy-based reconstructions and simulations of global Holocene climate 73 

change have yielded major mismatches, a discrepancy termed the ´Holocene conundrum´ (Liu et al., 74 

2014c; Kaufman and Broadman, 2023). While simulations indicate an increase in Holocene temperature 75 

(Liu et al., 2014c), proxy data syntheses rather support a Mid-Holocene temperature maximum (Marcott 76 

et al., 2013; Kaufman et al., 2020b). Recently, several explanations for this finding were proposed, most 77 

of which assign the mismatch to biases in the proxy data with respect to location or seasonality (Marsicek 78 

et al., 2018; Bader et al., 2020; Bova et al., 2021; Osman et al., 2021).  79 

Previous temperature reconstructions from continental areas are mainly available from the circum-North 80 

Atlantic region, and are potentially unrepresentative of the whole Northern Hemisphere temperature 81 

change, as the region was strongly impacted by the vanishing Laurentide ice-sheet (Rolandone et al., 82 

2003; Chouinard and Mareschal, 2009). Synthesis studies hitherto included rather few records from the 83 

large non-glaciated Asian continent (Andreev et al., 2004; Leipe et al., 2015; Melles et al., 2012; 84 

Nakagawa et al., 2002; Stebich et al., 2015; Tarasov et al., 2009 and 2013). The inclusion of recently 85 

compiled Holocene pollen records (Cao et al., 2019; Herzschuh et al., 2019) and high-quality modern 86 

pollen datasets (Tarasov et al., 2011; Cao et al., 2014; Davis et al., 2020; Dugerdil et al., 2021) from 87 

Asia now allows for higher quality quantitative reconstructions. 88 

While temperature patterns have often been studied, hemispheric syntheses of quantitative precipitation 89 

change during the Holocene are not yet available. A recent study of qualitative moisture proxy data 90 

suggests an overall warm and dry Mid-Holocene in the Northern Hemisphere mid-latitudes, related to 91 

the weakened latitudinal temperature gradient (Routson et al., 2019). This trend contrasts with the idea 92 

of positive hydrological sensitivity, that is, warm climates are wet at a global scale (Trenberth, 2011), 93 

which was confirmed from proxy and model studies from monsoonal areas in lower latitudes (Kutzbach, 94 

1981; Wang et al., 2017). However, the study of Routson et al. (2019) only included a few records from 95 

the subtropical monsoonal Asia that is known for complex Holocene moisture patterns (Herzschuh, 2004; 96 

Chen et al., 2019; Herzschuh et al., 2019). These and further synthesis studies (Wang et al., 2010; Chen 97 

et al., 2015; Wang et al., 2020) also gave a plethora of alternative explanations to characterize these 98 

patterns, including interactions between the monsoon and westerlies circulation and evaporation effects.  99 

Pollen spectra are a well-established paleoclimate proxy and quantitative estimates of past climatic 100 

change are mainly derived by applying (transfer functions of) modern pollen-climate calibration sets to 101 

fossil pollen records (Birks et al., 2010; Chevalier et al., 2020). Accordingly, pollen-based 102 

reconstructions constitute a substantial part of multi-proxy syntheses (e.g., Kaufman et al., 2020b), albeit 103 

derived from different calibration sets and methods, which makes a consistent assessment of inherent 104 
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reconstruction biases difficult. Pollen data are one of the few land-derived proxies available that can 105 

theoretically contain independent information on both temperature and precipitation in the same record 106 

(Chevalier et al., 2020; Mauri et al., 2015). Consistent pollen-based reconstructions can thus contribute 107 

to better characterizing past temperature and precipitation changes across large landmasses and how 108 

these changes co-vary over time (Davis et al., 2003).  109 

Here, we analyze spatio-temporal patterns of pollen-based reconstructions of mean annual temperature 110 

(Tann), mean July temperature (TJuly), and mean annual precipitation (Pann) from 1908 sites from the 111 

Northern Hemisphere extratropics that were generated using harmonized methods and calibration 112 

datasets (LegacyClimate 1.0, Herzschuh et al., 2022a) and have revised chronologies (Li et al., 2022). 113 

We address the following questions: (1) What are the continental, latitudinal, and regional patterns of 114 

Holocene temperature change in the Northern Hemisphere extratropics and how do our new 115 

reconstructions align with the global averaged trends of a previous global temperature synthesis? (2) 116 

What are the continental, latitudinal, and regional patterns of Holocene precipitation change and how 117 

do these changes co-vary with temperature trends? 118 

 119 

2 Methods 120 

This study analyzes pollen-based reconstructions provided in the LegacyClimate 1.0 dataset 121 

(Herzschuh et al., 2023). It contains pollen-based reconstructions of TJuly, Tann, and Pann of 2593 records 122 

along with transfer function metadata and estimates of reconstruction errors and is accompanied by a 123 

manuscript analyzing reconstruction biases and presenting reliability tests (Herzschuh et al., 2022a). 124 

The fossil pollen records, representing the LegacyPollen 1.0 dataset, were derived from multiple natural 125 

archives, most commonly continuous lacustrine and peat accumulations (Herzschuh et al., 2022b), and 126 

originate from the Neotoma Paleoecology Database (´Neotoma´ hereafter; last access: April 2021; 127 

Williams et al., 2018), a dataset from Eastern and Central Asia (Cao et al., 2013; Herzschuh et al., 2019), 128 

a dataset from Northern Asia (Cao et al., 2019), and a few additional records to fill up some spatial data 129 

gaps in Siberia. 130 

The chronologies of LegacyPollen 1.0 are based on revised ´Bacon´ (Blaauw and Christen, 2011) age-131 

depth models with calibrated ages at each depth provided by Li et al. (2022). Taxa are harmonized to 132 

genus level for woody and major herbaceous taxa and to family level for other herbaceous taxa. Along 133 

with LegacyClimate 1.0, a taxonomically harmonized modern pollen dataset is provided (a total of 15379 134 

samples; Herzschuh et al., 2022a) which includes datasets from Europe (EMPD2, Davis et al., 2020), 135 

Asia (Tarasov et al., 2011; Herzschuh et al., 2019; Dugerdil et al., 2021), and North America (from 136 

Neotoma; Whitmore et al., 2005). LegacyClimate 1.0 also provides the climate data for the sites of the 137 

modern pollen samples that were derived from WorldClim 2 (Fick and Hijmans, 2017). 138 

LegacyClimate 1.0 provides reconstructions based on different methodologies including two versions of 139 

WA-PLS (weighted averaging partial least squares regression, a transfer function-based approach) and 140 

MAT (modern analogue technique). For each fossil site, we calculated the geographic distance between 141 

each modern sampling site and each fossil location and selected a unique calibration set from modern 142 
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sites within a 2000 km radius (Cao et al., 2014), as it was shown to be a good trade-off between analog 143 

quality and quantity (Cao et al., 2017). For WA-PLS, the used component, typically first or second, was 144 

identified using model statistics as derived from leave-one-out cross-validation based on the criterion 145 

that an additional component be used only if it improves the root mean squared error (RMSE) by at least 146 

5% (ter Braak and Juggins, 1993). A WA-PLS_tailored reconstruction is also provided in the 147 

LegacyClimate 1.0 dataset (Herzschuh et al., 2022a), which addresses the problem that co-variation in 148 

modern temperature and precipitation data can be transferred into the reconstruction. To reduce the 149 

influence of one climate variable on the target variable, the modern range of the non-target variable is 150 

reduced by tailoring the modern pollen dataset to a selection of sites with little covariance between the 151 

two variables. For example, to reconstruct TJuly we identified the Pann range reconstructed by WA-PLS 152 

and extended it by 25% at both ends. For the selection of sites in the modern training dataset, we then 153 

restricted modern Pann to that range accordingly. As such, we keep all information for reconstruction 154 

from those modern pollen spectra that cover a wide temperature range but downweight the information 155 

from pollen spectra covering a wide precipitation range. However, initial assessments did not show any 156 

major differences compared to using the standard WA-PLS-derived reconstruction. Therefore, we do 157 

not make use of this dataset for this study so as to be consistent with previous studies. For comparison, 158 

we provide a plot with hemispheric, continental, and latitudinal mean curves for TJuly, Tann, and Pann 159 

reconstructed by WA-PLS_tailored in the supplement. The MAT reconstructions were derived from the 160 

seven best analogs that we identified based on the dissimilarity measures between the fossil samples 161 

and the modern pollen assemblages using the squared-chord distance metric (Simpson, 2012). MAT 162 

reconstructions were highly correlated with those obtained by WA-PLS (Herzschuh et al., 2022a). Here, 163 

we opted for the widely used WA-PLS, as it is less sensitive to the size and environmental gradient 164 

length of the modern pollen dataset and is thus less affected by spatial autocorrelation effects and can 165 

better handle poor analog situations (ter Braak and Juggins, 1993; Telford and Birks, 2011; Cao et al., 166 

2014; Chevalier et al., 2020). Statistical significance tests sensu Telford & Birks (2011) were performed 167 

for each site for WA-PLS, WA-PLS_tailored and MAT and assessed in Herzschuh et al. (2022a). 168 

Of the 2593 records available in LegacyClimate 1.0, 1908 records with at least 5 samples that cover at 169 

least 4000 years of the Holocene and have a mean temporal resolution of 1000 years or less were 170 

included in the time-slice comparisons based on this criterion (Fig. 1). The construction of time-series 171 

to estimate the means of climate variables was further restricted to 957 records that cover the full period 172 

of 11 to 1 ka.  173 



5 
 

174 

175 

Figure 1. (top) Spatial coverage of the LegacyClimate 1.0 (dots) and Temp12k (Kaufman et al. 176 

2020b, crosses) datasets used in this analysis. The map shows sites that cover the entire Holocene 177 

(i.e., 11-1 ka) as red symbols and those that cover parts of the Holocene but at least 4000 years in the 178 

period between 12 and 0 ka as black symbols. (bottom) Temporal coverage of the LegacyClimate 1.0 179 

dataset. 180 

 181 

The mean root mean squared error of prediction (RMSEP; WA-PLS) from all 957 sites included in the 182 

time-series analyses is 2.4±0.7°C (one standard deviation) for TJuly, 2.6±0.5°C for Tann, and 244±74 mm 183 

for Pann. They show a spatial pattern in that the RMSEPs are higher in areas with steep climate gradients 184 

(e.g. Central Asia and along the western coast of North America; see Fig. 5 in Herzschuh et al., 2022a). 185 
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As it has already been shown in previous comparisons, WA-PLS can have higher RMSEPs than MAT 186 

but these do not necessarily reflect a less reliable reconstruction but methodological differences. MAT 187 

is known to be more sensitive to spatial autocorrelation, which causes the model performance to be 188 

over-optimistic compared to WA-PLS (Cao et al., 2014). Besides, trends and the relative changes, as 189 

interpreted in this study, are less sensitive to methodological biases than absolute values.  190 

Derived time-series of TJuly, Tann, and Pann were smoothed over a 500-yr time-scale and resampled at a 191 

100 yr-resolution using the corit package in R (version 0.0.0.9000, Reschke et al., 2019). Because the 192 

original time-series are unevenly spaced, we used this package as it is designed to resample irregularly 193 

sampled time-series to an equidistant spacing (Reschke et al., 2019). The smoothing length of 500 194 

years reflects the typical resolution of the original pollen records. These derived time-series were 195 

sampled at selected time-slices and converted into a regular 2° x 2° raster grid (by taking the mean of 196 

all records located within the grid cell) using the raster package in R (version 3.5-11, R Core Team, 197 

2020; Hijmans et al., 2021).  198 

To calculate zonal, (sub-)continental (i.e., Asia (>43°E), Europe (<43°E), Eastern North America 199 

(<104°W; Williams et al., 2000) and Western North America), and hemispheric means we selected all 200 

957 smoothed and resampled time-series of TJuly, Tann, and Pann that cover the full period between 11 201 

and 1 ka and calculated climate anomalies for all three climate variables. Rather than using the 202 

anomalies for Pann we calculated the precipitation change as % relative to the 1 ka reference period (Fig. 203 

3) or relative to the younger time-slice (Fig. 4). The estimate at 1 ka was used as a reference to calculate 204 

the anomalies, as many records either poorly or do not cover the last 0.5 ka. Weights proportional to the 205 

inverse number of time-series per cell in the grid were used to calculate the weighted mean and standard 206 

deviation (using the wtd.mean and wtd.var functions from the Hmisc R-package, version 5.0-1, Harrell 207 

& Dupont, 2023). The weighted standard error was calculated by dividing the weighted standard 208 

deviation estimates by the square root of the number of grid cells with at least 1 record. In total, 436 grid 209 

cells between 17°N and 79°N are covered by one or more time-series (Fig. 2). 210 

The zonal mean over 10° bands of (sub-)continents (e.g. for 30-40°N of Europe) were calculated and 211 

also used to calculate the mean time-series of the (sub-)continents, with weights proportional to the 212 

terrestrial area in a zonal band based on the WGS84 EASE-Grid 2.0 global projection (Brodzik et al., 213 

2012). Likewise, the area-weighting was applied to derive the continental means and hemispheric-wide 214 

(zonal) means. We compare the linear trends of all zonal means with each other for each continent, as 215 

well as the linear trends of the continental weighted means, taking into account the standard error of 216 

each average. We take a Monte-Carlo approach to generate ensembles of trend estimates after adding 217 

random errors and use a standard t-test to assess, pairwise, whether the means of the ensembles are 218 

significantly different.  219 
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220 

Figure 2. Number of time-series per grid cell. The map shows the number of time-series that are 221 

merged into one grid cell. Colored rectangles (as used for the zonal mean curves in Fig. 3) indicate the 222 

latitudinal band a respective grid cell belongs to. 223 

 224 

Furthermore, we extracted 325 records that cover the full Holocene period in the Temp12k dataset 225 

(version 1-1-0; https://lipdverse.org/project/temp12k, last access February 2023; Kaufman et al., 2020b) 226 

applying the same restrictions as with the LegacyClimate 1.0 dataset (i.e., at least 5 samples, a mean 227 

temporal resolution of 1000 years or less). Instead of 11.0 ka we here used a cut-off of 10.5 ka as many 228 

records in this dataset start shortly after 11.0 ka). For 43 sites, more than one temperature time-series 229 

were stored in the Temp12k dataset. In these cases, we selected that time-series with the least amount 230 

of missing temperature values in the period between 10.5 and 1 ka, leaving 272 records that were used 231 

to construct the mean temperature anomaly time-series similar to the approach described for the 232 

LegacyClimate 1.0 dataset. We excluded all pollen-based reconstructions from the Temp12k dataset 233 

between 30°N and 80°N (n=117) to avoid duplications with the LegacyClimate 1.0 dataset when 234 

integrating both datasets into a joint hemispheric and global mean temperature stack curve.   235 

 236 

3 Results 237 

3.1 Spatio-temporal pattern of temperature reconstructions 238 

The temporal patterns of temperature records covering the entire Holocene (i.e., 11-1 ka) show strong 239 

differences between continents (Fig. 3). Europe shows a pronounced Mid-Holocene temperature 240 

maximum of +1.3±-0.4°C for TJuly at 5.7 ka while the Tann maximum is less pronounced (+0.9±0.4°C at 241 

5.8 ka). The Mid-Holocene TJuly was weaker and occurred earlier in Eastern North America (+0.5±0.2°C 242 

at 7.0 ka) while Tann warming was +0.7±0.3°C at the same time period (7.0 ka). Asia (TJuly) and Western 243 

North America (Tann) show almost no maximum but only some variations around a continuously 244 

increasing Holocene trend, with a higher increase rate before 6 ka than after 6 ka.  245 
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Aside from these differences among (sub-)continents, certain regional differences exist. Early Holocene 246 

cold climate anomalies were most pronounced in latitudes between 45°N and 65°N, particularly in 247 

Northern Europe, Northeastern Asia, and Alaska (Fig. 4) with above 2.5°C deviation to Holocene Tann 248 

maximum values in most records. The most pronounced Tann maximum (more than 1.5°C warmer than 249 

the Late Holocene) can be found in Europe north of 60°N and Eastern North America between 60°N 250 

and 70°N, forming a circum-North Atlantic pattern (Fig. 5). Records from Eastern Europe, inner Asia, 251 

and Southern North America show mostly no Mid-Holocene temperature maximum, but rather a Late 252 

Holocene maximum. Records with an Early Holocene maximum dominate the north-central part of North 253 

America and China, though these areas are characterized by high spatial variability. High ranges of 254 

Holocene temperature variations (larger than 5°C) are found in mid-latitude Europe, Western Canada, 255 

Southeastern US, and along the north Asian Pacific coast. 256 

The averaged Northern Hemisphere north of 30°N time-series of all records that cover the entire 257 

Holocene (Fig. 3) indicate that mean TJuly was lowest at the beginning of the Holocene (-0.7±0.2°C 258 

compared to present), increased until 7 ka (+0.5±0.1°C compared to present), and slightly decreased 259 

afterwards to reach modern temperatures. Tann was also lowest at the beginning of the Holocene (-260 

1.4±0.2°C compared to present) and reached its maximum of 0.3±0.2°C compared to present at 6.5 ka. 261 

Finally, our revised global temperature curve includes all of our records and those of the Temp12k 262 

dataset (Kaufman et al., 2020b) that cover the entire Holocene (in total, excluding duplicate pollen 263 

records, 1098 records). It shows that mean Tann was lowest during the Early Holocene at 10.5 ka with a 264 

-0.3±0.3°C anomaly relative to 1 ka and warmest at 6.6 ka with a warming of 0.3±0.3°C. For the Northern 265 

Hemisphere extratropics (30-80°N), we find that mean Tann was lowest during the Early Holocene at 266 

10.5 ka with a -0.3±0.1°C anomaly relative to 1 ka and warmest at 6.4 ka with a warming of 0.08±0.04°C. 267 

The linear trends of all zonal means are significantly different (p < 0.01) for both TJuly (Table A2) and Tann 268 

(Table A3). While the uncertainty range is small in the mid-latitudes they are larger for the 30-40°N zonal 269 

band (TJuly) and especially for the polar region (TJuly and Tann; Fig. A3). The linear trends for TJuly for all 270 

continental means are significantly different, despite overlapping uncertainty ranges for several zonal 271 

bands, e.g. 40-50°N and 50-60°N in Western North America (Fig. A4); 30-40°N and 50-60°N in Eastern 272 

North America (Fig. A5), 30-40°N and 40-50°N, as well as 50-60°N and 60-70°N in Asia (Fig. A7). Large 273 

uncertainty ranges can be found in the 30-40°N zonal band (Europe, Fig. A6) and the polar region 274 

(Western North America, Fig. A4; Asia, Fig. A7). The linear trends for Tann reveal similarities between 275 

the weighted means of Europe and Asia (Europe vs. Asia: p = 0.08; Asia vs. Europe: p = 0.9; Table A5). 276 

For overlapping uncertainty ranges similar patterns compared to those of TJuly can be found, except for 277 

Eastern North America, where the zonal means of 30-40°N and 50-60°N are very different to each other, 278 

especially in the Early and Mid-Holocene (Fig. A5). Similar to TJuly, the largest uncertainty ranges can 279 

be found either in the 30-40°N or the 70-80°N zonal bands. For the weighted continental means the 280 

uncertainty ranges of Western and Eastern North America show a strong overlap, i.e. the TJuly mean of 281 

Eastern North America mirrors the weighted Northern Hemisphere TJuly mean. TJuly in Asia is lower 282 

overall while in Europe it is higher overall than the Northern Hemispheric mean, but the uncertainty 283 

range of both continental means are larger than those in North America (West and East) and the 284 
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Northern Hemisphere. For Tann the uncertainty ranges in all continents show a stronger overlap than for 285 

TJuly with pronounced differences between the Western and the Eastern part of North America (Fig. A8). 286 

 287 

3.2 Spatio-temporal pattern of precipitation reconstructions 288 

Holocene mean Pann variations (as % of modern value) averaged across the Northern Hemisphere 289 

extratropics have patterns that are mostly similar to Tann with Pann being lowest during the Early Holocene 290 

(-11.6±2.8% at 11 ka compared to 1 ka) and increasing until 5.9 ka before becoming relatively stable 291 

(Fig. 3). 292 

In contrast to the averaged Northern Hemisphere pattern, the (sub-)continental precipitation patterns 293 

differ from their respective temperature patterns. The mean precipitation time-series of Western North 294 

America and Europe increases from the Early Holocene to the Late Holocene; averaged Eastern North 295 

America precipitation increased until 6.5 ka and varies slightly around modern values from then; and 296 

Asia shows a pronounced maximum between 7 and 5 ka.  297 

Time-series maps of latitudinal means and differences (Fig. 4) reveal strong spatial patterns, particularly 298 

for Asia. The latitudinal mean time-series in Asia show a strong increase toward the Mid-Holocene of 299 

mostly >10%. After ca. 7 ka, certain differences exist: while the 70°N mean shows no clear further trend, 300 

the other mean curves show a precipitation maximum which is at least 5% above the Late Holocene 301 

minimum. Precipitation maxima (compared with the Late Holocene) are more pronounced and occur 302 

later at lower latitudes. Furthermore, the 6-1 ka difference maps reveal that the Mid-Holocene moisture 303 

maximum in subtropical Asia was most pronounced in East-central China with many records even 304 

showing >=50% higher values at 6 ka compared to 1 ka (Fig. 4).  305 

The Holocene precipitation increase in the other (sub-)continents is particularly strong in the 30-40°N 306 

bands in subtropical Europe and mid-latitude North America with >13% and >20% precipitation increase, 307 

respectively. In Europe and Western and Eastern North America the records from 70-80°N show an 308 

Early Holocene precipitation maximum (particularly pronounced in Alaska), which is in contrast to the 309 

trends in almost all other latitudinal bands.  310 

Comparing the linear trends for all zonal means reveals significant differences in all zonal bands for 311 

Europe and Eastern North America (p < 0.01). Similarities in the trends can be found in Western North 312 

America (70-80°N vs. 30-40°N: p = 0.06) and especially in Asia, where several combinations of zonal 313 

trends are not significantly different (i.e. 30-40°N vs. 40-50°N (p = 0.08) and 30-40°N vs. 70-80°N (p = 314 

0.76)). For details, see Table A4. All trends in the continental precipitation means are found to be 315 

different (p < 0.01; Table A5). The uncertainty ranges for all latitudinal means are small, except for the 316 

70-80°N zonal band in the polar region (%Pann; Fig. A3). In Western North America the zonal means of 317 

50-60°N and 60-70°N show a strong overlap in their uncertainty ranges and the largest uncertainty range 318 

can be found in the polar region (Fig. A4). In Europe and Asia, the mid-latitudes show the smallest 319 

uncertainty ranges, while the southernmost and northernmost zonal bands have higher uncertainty 320 

ranges (Fig. A6 and A7). Notable is the 40-50°N zonal band in Asia, which shows the highest uncertainty 321 

range of all continental zonal bands, especially in the Mid-Holocene (Fig. A7). Compared to the Northern 322 
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Hemispheric mean, the continental %Pann mean of Eastern North America shows the smallest deviations, 323 

although the continental mean only comprises the zonal bands between 30°N and 60°N. Precipitation 324 

changes in Western North America are overall lower than the Northern Hemispheric mean, while the 325 

precipitation changes in Asia are overall higher (Fig. A8).  326 

 327 
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Figure 3. Hemispheric, (sub-)continental, and zonal mean curves for TJuly, Tann, and %Pann derived 328 

from pollen-based reconstruction with WA-PLS. Curves from zonal bands that contain fewer than 329 

three grid cells were excluded. The shading corresponds to the latitude-weighted standard error of the 330 

latitude-weighted mean. Labels in corresponding colors indicate the number of grid boxes that 331 

contributed to each latitudinal curve.  332 

 333 

 334 

 335 
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 336 

Figure 4. Difference maps of TJuly, Tann (°C), and Pann (as % of the value of the younger time-slice) 337 

between selected time-slices. Color code for values outside the range were restricted to range maxima. 338 

A list with the entire value range and the proportions of values that fall within the restricted range are 339 

presented in Table A1. Maps are gridded values averaging the values of records from within the 2°x2° 340 

grid cell. 341 
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 342 

Figure 5. Maps indicating the timing of the Tann maximum (top) and the range of Tann variation 343 

during the Holocene (11-1 ka, bottom). Each 2°x2° grid cell contains the averaged values of all 344 

records located within one grid cell. For each grid cell, the Tann variation was determined as the range 345 

between minimum and maximum Tann anomalies. The Tann Holocene temperature maximum is the timing 346 

of the anomaly maximum. Color code for values outside the range were restricted to range maxima.  347 
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 348 

Figure 6. Mean curves for temperature. (top) Northern Hemisphere weighted means with shaded 349 

weighted standard error (no curves for latitudes): LegacyClimate 1.0 (n=957; blue), Temp12k dataset 350 

(n=272, see methods for record filter; purple,), LegacyClimate 1.0 + Temp12k mean (n=1098; red); 351 

(bottom) LegacyClimate 1.0 + Temp12k global mean with latitudinal means. Labels in corresponding 352 

colors indicate the number of grid boxes that contributed to each latitudinal curve.  353 

 354 

 355 

 356 
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4 Discussion 357 

4.1 Spatial temperature pattern (in light of the global Holocene temperature curve)  358 

The general pattern of the LegacyClimate 1.0 mean annual temperature curve of the Northern 359 

Hemisphere extratropics agrees with those of previous investigations (Marcott et al., 2013; Kaufman et 360 

al., 2020b; Kaufman and Broadman, 2023) including a cold Early Holocene, a temperature maximum 361 

during the Early to Mid-Holocene, and a slight cooling towards the present-day (Fig. 2; Fig. A8). Orbital 362 

forcings are assumed to have an important influence on the trends in the global mean temperatures, 363 

which led to feedback mechanisms like decreased polar sea ice or shifted vegetation ranges and thus 364 

to increased temperatures during the Mid-Holocene (Kaufman and Broadman, 2023). Subsequently, 365 

changes in solar irradiance, an increasing albedo due to land-cover changes and increasing volcanic 366 

activity probably contributed to a global cooling during the Late Holocene (Kaufman and Broadman, 367 

2023). Both our LegacyClimate 1.0 and the Temp12k mean temperature curves increase from the Early 368 

Holocene to the Mid-Holocene by about 0.4°C when the same stacking approach is applied. However, 369 

the LegacyClimate 1.0 stack shows only a minimal temperature decline between the early Mid-Holocene 370 

maximum and the Late Holocene minimum of ~0.08°C compared to ~0.17°C in the Temp12k stack. We 371 

suggest two probable reasons for this finding: 1) a more complete spatial and temporal 372 

representativeness of the dataset, and 2) a unique methodology to reconstruct a small set of climate 373 

variables from pollen data. 374 

First, our mean annual temperature curve includes about four times as many records as the Temp12k 375 

dataset (957 records in the LegacyClimate 1.0 dataset vs. 272 records in the Temp12k dataset, 376 

Kaufman et al. 2020b; Fig. 1). In particular, Asia is represented by substantially more records in the 377 

combined dataset. Our temperature reconstruction from Asia shows an average trend that differs from 378 

the overall Northern Hemisphere trend as it has no pronounced Holocene temperature maximum (Fig. 379 

A8; Table A6). This is particularly true for Asian Tann records south of 50°N and TJuly records south of 380 

60°N. This feature has not been recognized so far, likely because Asian temperature reconstructions 381 

are mostly lacking in previous compilations (e.g., Marcott et al., 2013; Marsicek et al., 2018; Routson et 382 

al., 2019; Kaufman et al., 2020b). Even if the Mid- to Late Holocene cooling trend observed in Asia north 383 

of 60°N (Fig. 2) agrees with the proposed Neoglacial (sub-)arctic-wide Holocene cooling, the amount of 384 

cooling of <0.5°C is low compared to the cooling observed in other regions (e.g., in Europe where an 385 

average cooling of ~1.5°C has been reconstructed; McKay et al., 2018; Fig. 2). As with the differences 386 

between Eastern and Western Eurasia, we find a difference between Eastern and Western North 387 

America. In particular, we can identify a circum-North Atlantic pattern with a strong Early Holocene 388 

increase, a pronounced Mid-Holocene maximum and strong temperature range, and a circum-North 389 

Pacific pattern with an overall weak change. This is likely related to the impact of the decaying Laurentide 390 

ice-sheet on the North Atlantic which was probably a stronger driver of Early to id-Holocene temperature 391 

change than insolation (Renssen et al., 2009; Renssen et al., 2012; Zhang et al., 2016). 392 

Even if this study shows a less pronounced Holocene temperature maximum, the problem remains that 393 

this does not align with the overall Holocene increase in the mean global (and Northern Hemisphere) 394 

temperature revealed by Earth System Models. Our study points to a strong regionalization of Holocene 395 
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temperature trends and range of variation in the Northern Hemisphere extratropics, which was also 396 

reported in recent studies (e.g. Kaufman et al., 2020b; Osman et al., 2021; Cartapanis et al., 2022). This 397 

somehow contradicts the ´Holocene conundrum´ concept which tackled Holocene temperature change 398 

mainly by analyzing the global mean and understanding the differences between proxy-based and 399 

simulated reconstructions. However, the conundrum debate has since progressed and recent studies 400 

hint at discrepancies in data-model comparisons due to spatiotemporal dynamics related to 401 

heterogeneous responses to climate forcing and feedbacks (e.g., the timing of a Holocene thermal 402 

maximum between reconstructions from continental and from marine proxy records; Cartapanis et al., 403 

2022). Our finding is in line with recent modeling approaches, which also yield strong regional 404 

differences in temperature developments (Bader et al., 2020) allowing for a regional comparison. Recent 405 

paleo-data assimilation approaches based on marine temperature reconstructions reveal peculiarities 406 

of spatial averaging as one reason for the model-data mismatch (Osman et al., 2021). The error is most 407 

pronounced where the number of included records is small. This stresses the importance of good spatial 408 

coverage of the records used for the assessment of the mean temperature trend. Including terrestrial 409 

reconstructions is crucial. Compared with previous syntheses of terrestrial records, our compilation is 410 

notable for its higher record density in Asia, a region for which Earth System Models show diverging 411 

past climate changes, highly sensitive to boundary conditions and forcing (Bakker et al. 2020; Brierley 412 

et al., 2020; Lohmann et al. 2021). Therefore, our reconstruction makes a decisive contribution to 413 

locating and clarifying the model-data mismatch in the Northern Hemisphere extratropics. From a proxy 414 

perspective, future targets of synthesis studies should focus on the Southern Hemisphere and poorly 415 

covered areas in Central Asia and Siberia.  416 

Second, standardized methodologies may have contributed to the observed differences between the 417 

LegacyClimate 1.0 mean Tann curve and the Temp12k curve. Our Tann reconstruction only includes 418 

records of mean annual temperature while the Temp12k product mixes reconstructions of seasonal 419 

temperature (mostly TJuly) if Tann is not available from a site. This assumption of equivalence between 420 

annual and summer temperature at any given site can impact the trend and amplitude of the stacks. A 421 

seasonal bias in the reconstructions may originate from a real, larger Holocene range of summer 422 

temperature variations (Bova et al., 2021) or is an artefact introduced by having a larger TJuly range 423 

covered by the calibration datasets compared with Tann which is, however, not the case in our calibration 424 

sets.  425 

Our pollen-based reconstructions are all performed with WA-PLS, which is known to produce smaller 426 

climate amplitudes than MAT (a likewise commonly used method) because it is less sensitive to extreme 427 

climate values in the modern pollen dataset (Birks and Simpson 2013; Cao et al., 2017; Nolan et al. 428 

2019). Furthermore, by using a standard area size for our modern pollen datasets, we may have 429 

stabilized the regional reconstructions, that is, equalized the amplitude as the source areas represent 430 

rather similar biogeographical and climate ranges. Finally, our reconstructions include only records that 431 

cover the entire Holocene period (11-1 ka) and not just parts of it. Hence, all time-slices have a similar 432 

spatial coverage and the temporal pattern is not biased by regions where archives are only available in 433 

certain periods (e.g., the Late Holocene peatland establishment).  434 
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As with all applications of taxa-based transfer functions to fossil records, we assume that both modern 435 

and past taxa assemblages (in our case, vegetation) are in equilibrium with climate, and that the 436 

relationships inferred from modern data do not change throughout the Holocene (Birks et al., 2010; 437 

Chevalier et al., 2020) and that the modern pollen assemblages are not heavily biased by human impact. 438 

Differences in global boundary conditions during the Early to id-Holocene (e.g., lower atmospheric CO2 439 

concentration, different seasonal insolation) however, may have modified these relationships, which 440 

could have also dampened the reconstructed amplitudes. Also, vegetation response to climate change 441 

may be involve lags (see the ongoing discussion about the so-called ´forest conundrum´, i.e., the 442 

observation that observed forest maximum lags the simulated temperature maximum; Dallmeyer et al., 443 

2022) and depends on the initial conditions such as the distribution of refugia during the Last Glacial 444 

(Herzschuh et al., 2016; 2020). Furthermore, there are areas, especially the densely settled regions in 445 

Europe and Southeastern Asia, that are affected by human activities throughout the Holocene due to 446 

intense animal husbandry, as inferred from the abundance of Plantaginaceae and Rumex as indicators 447 

of grazing (Herzschuh et al., 2022a), or due to industrialization since the second half of the 19th century. 448 

This probably led to extinction events, especially for disturbance-dependent taxa and contributed to 449 

gaps within the potential bioclimatic space of taxa that form natural communities (Zanon et al., 2018). 450 

The absolute effect of these biases is hard to quantify (but see Cleator et al., 2020), and many 451 

comparative, multi-proxy Holocene studies have shown that pollen-based reconstructions are as reliable 452 

as any other proxy (Kaufmann et al., 2020a; Dugerdil et al., 2021). In contrast, one advantage of single 453 

proxy studies is that any biases will affect all the records similarly. As such, even if the actual amplitude 454 

of our regional and global stacks might be dampened, the trends and spatial patterns shared by the data 455 

are likely to remain correct. 456 

 457 

4.2 Spatio-temporal precipitation pattern 458 

Our analyses of the Holocene spatio-temporal precipitation pattern fill a research gap, as syntheses of 459 

proxy-based precipitation change on a hemispheric scale during the Holocene are still lacking. Regional 460 

syntheses are available for Europe (Mauri et al., 2014 and 2015), North America (Ladd et al., 2015; 461 

Routson et al., 2021), and Eastern Asia (Herzschuh et al., 2019). Interestingly, we observed a similar 462 

pattern for Northern Hemisphere-wide averaged Holocene trends of Pann and Tann, but differences 463 

among corresponding Pann and Tann curves at (sub-)continental and latitudinal scales, e.g., in Asia, where 464 

the Pann means are overall higher than the Northern Hemispheric means while the Tann means are overall 465 

lower since ~ 9 ka (Fig. A8), or for the 30-40°N zonal band, where Tann shows an Early to Mid-Holocene 466 

warming while no trend in the Pann means could be found for this time period (Fig. A3). 467 

This regional heterogeneity with respect to the precipitation trend (i.e., significantly different trends for 468 

the Northern Hemisphere except for some regions in Asia, Table A4, Fig. A8) is also seen in recent 469 

Earth System Model simulations for the last 8000 years (Mauri et al., 2014; Dallmeyer et al., 2021). 470 

Although the simulated pattern does not exactly match our reconstructions, they share many similar 471 

structures such as high precipitation in the Early and Mid-Holocene in East Asia (Fig. 4). For this region, 472 

our reconstruction shows the strongest Mid- to Late Holocene precipitation decline worldwide, reflecting 473 
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the weakening of the East Asian Summer Monsoon (EASM) in response to the decrease in summer 474 

insolation. This trend in moisture has been confirmed by earlier qualitative and quantitative proxy 475 

syntheses and modeling studies (Wang et al., 2010; Zheng et al., 2013; Liu et al., 2014a; Herzschuh et 476 

al., 2019). 477 

In contrast, many Central Asian sites show low Early-Holocene precipitation levels (Fig. 4). This anti-478 

phase relationship in EASM to Central Asian moisture change is in line with earlier studies (Jin et al., 479 

2012; Chen et al., 2019; Herzschuh et al., 2019; Zhang et al., 2021). The causal mechanisms are still 480 

debated. Among other reasons, precipitation-evaporation effects (Herzschuh et al., 2004; Zhang et al., 481 

2011; Kubota et al., 2015), transcending air mass related to the Rodwell-Hoskins response to 482 

monsoonal heating (Herzschuh et al., 2004; Wang et al., 2017), effects from winter precipitation (Li et 483 

al., 2020), and translocation of the westerly jetstream (Herzschuh et al., 2019) may contribute to the 484 

anti-phased precipitation change. 485 

Arctic warming mechanistically should be linked with wetting in the Arctic due to high hydrological 486 

sensitivities (Trenberth, 2011). Such a pattern is, for example, obvious for Early to id-Holocene climate 487 

change in most records from Alaska. Interestingly, several records from the northern Arctic coastal 488 

region in Russia, northern Norway and Canada show a wet Early Holocene, which is also observed in 489 

simulations (Dallmeyer et al., 2021). 490 

Contrasting the trend in the East Asian monsoon region (Fig. 2; Fig. A7), annual precipitation increases 491 

in mid-latitude Europe during the Holocene according to our reconstructions (Fig. 2; Fig. A6). Routson 492 

et al. (2019) propose a circum-hemispheric mid-latitudinal rise of moisture levels over the Holocene 493 

based on a semi-quantitative dataset that is strongly concentrated around the circum-Atlantic region. 494 

They relate the decreased net precipitation to the weakened Early Holocene latitudinal temperature 495 

gradient. Due to polar amplification, the arctic regions experienced a stronger warming in the climate 496 

compared to the equatorial region, which is also supported by our dataset. However, we also see in our 497 

reconstructions that this view is too general, but it may explain the precipitation response in Europe as 498 

the weakening of the latitudinal temperature gradient is particularly pronounced in Europe in our 499 

reconstructions. This change in temperature pattern is probably a result of a dampening in the cyclonic 500 

activity along the weaker westerly jet (Chang et al., 2002; Routson et al., 2019; Xu et al., 2020), bearing 501 

less precipitation during the Early Holocene compared to modern conditions. With the strengthening of 502 

the latitudinal temperature gradient towards the Late Holocene, cyclonic activity enhances, leading to 503 

an increase of precipitation over the Holocene. 504 

According to our reconstructions, the precipitation trend in Eastern and Western North America strongly 505 

differs (p < 0.01; Table A5; Fig. A3). While in the Eastern part the mean precipitation level is relatively 506 

stable in all latitudinal bands, except the 50-60°N zonal band, over the Holocene (Fig. A5), precipitation 507 

strongly increases on average in the Western part (Fig. A4), driven by a precipitation rise in the mid-508 

latitudes (40-70°N). In the polar regions and south of 40°N, precipitation declines from the Mid-Holocene 509 

(Fig. 4; Fig. A4). The latter may be related to a decrease in the North American monsoon intensity, in 510 

line with the orbital monsoon hypothesis (Kutzbach, 1981; Harrison et al., 2003). In the polar region, 511 

modeling studies report northward shifted storm tracks coinciding with a northward replaced upper 512 
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tropospheric jetstream in the Mid-Holocene compared to the Late Holocene, promoting precipitation in 513 

the arctic region and decreasing precipitation at mid-latitudes (Zhou et al., 2020; Dallmeyer et al., 2021). 514 

With the southward shift of the polar jet during the Holocene, precipitation decreased in the high northern 515 

latitudes in North America and increased further south (Liu et al., 2014b). 516 

The rise in moisture levels across the North American continental interior over the course of the 517 

Holocene has been proposed before (Grimm et al., 2001; Zhou et al., 2020; Dallmeyer et al., 2021) but 518 

has not yet been quantified with continental-wide proxy-data. The main drivers of this trend are still being 519 

debated: besides shifts in the westerly wind circulation (Seager et al., 2014), weakening subsidence 520 

caused by teleconnection with the weakening Northern Hemispheric monsoon systems (Harrison et al., 521 

2003; Dallmeyer et al., 2021), reorganization of the atmospheric circulation around the Bermuda high 522 

(Grimm et al., 2001), and changes in the sea-surface temperature pattern (Shin et al., 2006) may 523 

contribute to an increase in precipitation over the Holocene. 524 

Reconstructing temperature and precipitation from a single dataset implies that they are both important 525 

in defining the presence and/or abundance of specific pollen taxa (Salonen et al., 2019). This hypothesis 526 

cannot be tested but to some extent has been assessed by several analyses (Juggins, 2013). The WA-527 

PLS reconstruction was also applied with tailored modern calibration sets (i.e., selecting samples so 528 

that the correlation between temperature and precipitation in the calibration dataset is reduced). The 529 

finding that the reconstructions were generally very similar between those using the full and those using 530 

the tailored modern datasets can be taken as an indication that co-variation is not a major issue in these 531 

reconstructions (Herzschuh et al., 2022a). This conclusion is also supported by the fact that Tann and 532 

Pann records that pass the reconstruction significance test when the impact of the other variable is 533 

partialled out (Telford and Birks, 2011), are almost evenly distributed over the Northern Hemisphere 534 

records (Herzschuh et al., 2022a). This is also confirmed by the visual inspection of the regional 535 

reconstructions in Fig. 3, where we cannot detect correlations between variables within latitudinal zones, 536 

as would be expected from dependent reconstructions. This suggests that our reconstructions do reflect 537 

distinctive trends from the pollen data. 538 

 539 

5 Conclusions 540 

We investigated Holocene time-series of TJuly, Tann, and Pann for the Northern Hemisphere extratropics 541 

making use of 2593 pollen-based reconstructions (LegacyClimate 1.0). Compared with previous 542 

datasets, we include many more records, particularly from Asia. We present mean curves obtained with 543 

the same method for the Northern Hemisphere, the (sub-)continents (Asia, Europe, Eastern North 544 

America, Western North America), and regional zones (i.e., 10° latitudinal bands for (sub-)continents) 545 

as well as Northern Hemisphere gridded data for selected time-slices.  546 

Our results indicate that Holocene climate change shows unique regional patterns. The concept of a 547 

Mid-Holocene temperature maximum only applies mainly to the mid and high northern latitudes in the 548 

circum-North Atlantic region while records from mid-latitude Asia, Western North America, and all 549 

subtropical areas do not fit into this concept but mostly show an overall Holocene increase or other 550 
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patterns. As such, the ́ Holocene conundrum´, originally proposed as a global feature, may instead apply 551 

to a restricted region.  552 

The precipitation trend is roughly similar to the temperature trend at the hemispheric scale, in particular 553 

with respect to the strong increase from the Early to Mid-Holocene. At the regional scale, the 554 

precipitation trends differ from each other and also from the regional temperature trends. The 40-50° 555 

latitudinal band in Asia shows the most pronounced Mid-Holocene precipitation maxima while many 556 

regions show increasing Holocene trends including most of Europe and Western North America. We 557 

relate these differences to regionally specific circulation mechanisms and their specific relationships 558 

with temperature changes. 559 

Given a background of strong regional heterogeneity, the calculation of global or hemispheric means 560 

might generally lead to misleading concepts but the focus should be on understanding the spatio-561 

temporal patterns requiring spatially dense proxy-datasets for comparison with simulations. 562 

 563 

6 Data Availability 564 

The compilation of reconstructed TJuly, Tann, and Pann, is open access and available at PANGAEA 565 

(https://doi.org/10.1594/PANGAEA.930512; in the “Other version” section). The dataset files are stored 566 

in machine-readable data format (.CSV), which are already separated into Western North America, 567 

Eastern North America, Europe, and Asia for easy access and use. 568 
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Appendix 588 

 589 

Table A1. Range of values in the difference maps (Fig. 4) and proportion of values that fall within a 590 

restricted range of -3 to +3 °C for temperature and -50% to 50% for precipitation change. 591 

 

TJuly Tann Pann 

Value 

range 

% within 

restricted 

range 

Value 

range 

% within 

restricted 

range 

Value 

range 

% within 

restricted 

range 

11-9 ka 
-12.3°C to 

+8.2°C 
87.8 % 

-20.0°C to 

+6.0°C 
79.7 % 

-131.7% to 

+151.3% 
96.9 % 

9-6 ka 
-6.1°C to 

+16.4°C 
95.8 % 

-8.9°C to 

+12.0°C 
92.9 % 

-81.4% to 

+103.9% 
98.4 % 

6-3 ka 
-8.2°C to 

+6.4°C 
98.1 % 

-8.0°C to 

+7.9°C 
96.5 % 

-175.1% to 

+423.6% 
98.8 % 

3-1 ka 
-10.1°C to 

+4.6°C 
98.2 % 

-11.0°C to 

+10.1°C 
97.2 % 

-1157.4% 

to +90.7% 
99.0 % 

6-1 ka 
-9.6°C to 

+6.5°C 
94.9 % 

-8.9°C to 

+9.0°C 
93.6 % 

-67.6% to 

+694.3% 
98.2 % 
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 592 

Figure A1: Hemispheric, continental, and latitudinal mean curves for TJuly, Tann, and Pann derived 593 

from pollen-based reconstruction with WA-PLS_tailored. Latitudinal bands that contain fewer than 594 

three grid cells are not shown. The shading corresponds to the latitude-weighted standard error of the 595 

latitude-weighted mean.  596 
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597 

Figure A2: Hemispheric, continental, and latitudinal mean curves for TJuly, Tann, and Pann derived 598 

from pollen-based reconstruction with WA-PLS_tailored with significant records (p < 0.2). 599 

Latitudinal bands that contain fewer than three grid cells are not shown. The shading corresponds to the 600 

latitude-weighted standard error of the latitude-weighted mean.  601 
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 602 

Figure A3: Northern Hemispheric latitudinal mean curves with shaded standard errors for TJuly, 603 

Tann, and %Pann derived from pollen-based reconstruction with WA-PLS (latitudinal bands that 604 

contain fewer than three grid cells are not shown). 605 

 606 
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607 

Figure A4: Western North American latitudinal mean curves with shaded standard errors for TJuly, 608 

Tann, and %Pann derived from pollen-based reconstruction with WA-PLS (latitudinal bands that 609 

contain fewer than three grid cells are not shown). 610 

 611 
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612 

Figure A5: Eastern North American latitudinal mean curves with shaded standard errors for TJuly, 613 

Tann, and %Pann derived from pollen-based reconstruction with WA-PLS (latitudinal bands that 614 

contain fewer than three grid cells are not shown). 615 

 616 
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617 

Figure A6: European latitudinal mean curves with shaded standard errors for TJuly, Tann, 618 

and %Pann derived from pollen-based reconstruction with WA-PLS (latitudinal bands that contain 619 

fewer than three grid cells are not shown). 620 

 621 
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622 

Figure A7: Asian latitudinal mean curves with shaded standard errors for TJuly, Tann, and %Pann 623 

derived from pollen-based reconstruction with WA-PLS (latitudinal bands that contain fewer than 624 

three grid cells are not shown). 625 

 626 
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627 

Figure A8: Weighted continental means with shaded standard errors for TJuly, Tann, and %Pann 628 

derived from pollen-based reconstruction with WA-PLS.  629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 
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Table A2. Significance values for zonal linear trends derived from a Monte-Carlo test comparison for 644 

mean July temperatures (TJuly). 645 

  30-40°N 40-50°N 50-60°N 60-70°N 70-80°N 

Western North 

America 

30-40°N  p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01  

Eastern North 

America 

30-40°N  p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01  

Europe 

30-40°N  p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01  

Asia 

30-40°N  p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01  

 646 
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Table A3. Significance values for zonal linear trends derived from a Monte-Carlo test comparison for 647 

mean annual temperatures (Tann). 648 

  30-40°N 40-50°N 50-60°N 60-70°N 70-80°N 

Western North 

America 

30-40°N   p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01   

Eastern North 

America 

30-40°N  p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01   

Europe 

30-40°N   p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01   

Asia 

30-40°N  p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01   

 649 
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Table A4. Significance values for zonal linear trends derived from a Monte-Carlo test comparison for 650 

annual precipitation (Pann). 651 

  30-40°N 40-50°N 50-60°N 60-70°N 70-80°N 

Western North 

America 

30-40°N   p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N 0.06 p < 0.01 p < 0.01 p < 0.01   

Eastern North 

America 

30-40°N  p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01   

Europe 

30-40°N   p < 0.01 p < 0.01 p < 0.01 p < 0.01 

40-50°N p < 0.01  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N p < 0.01 p < 0.01 p < 0.01 p < 0.01   

Asia 

30-40°N  0.08 p < 0.01 p < 0.01 0.76 

40-50°N 0.02  p < 0.01 p < 0.01 p < 0.01 

50-60°N p < 0.01 p < 0.01  p < 0.01 p < 0.01 

60-70°N p < 0.01 p < 0.01 p < 0.01  p < 0.01 

70-80°N 0.39 0.02 p < 0.01 p < 0.01  

 652 
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Table A5. Significance values for continental means linear trends derived from a Monte-Carlo test 653 

comparison. 654 

  
Western North 

America 

Eastern North 

America 
Europe Asia 

TJuly 

Western North 

America 
 p < 0.01 p < 0.01 p < 0.01 

Eastern North 

America 
p < 0.01  p < 0.01 p < 0.01 

Europe p < 0.01 p < 0.01  p < 0.01 

Asia p < 0.01 p < 0.01 p < 0.01   

Tann 

Western North 

America 
  p < 0.01 p < 0.01 p < 0.01 

Eastern North 

America 
p < 0.01  p < 0.01 p < 0.01 

Europe p < 0.01 p < 0.01  0.08 

Asia p < 0.01 p < 0.01 0.9   

Pann 

Western North 

America 
 p < 0.01 p < 0.01 p < 0.01 

Eastern North 

America 
p < 0.01  p < 0.01 p < 0.01 

Europe p < 0.01 p < 0.01  p < 0.01 

Asia p < 0.01 p < 0.01 p < 0.01   

 655 

Table A6. Significance values for continental means compared to the Northern Hemispheric mean 656 

derived from a Monte-Carlo test comparison. 657 

 
Western North 

America 

Eastern North 

America 
Europe Asia 

TJuly p < 0.01 p < 0.01 p < 0.01 p < 0.01 

Tann p < 0.01 p < 0.01 p < 0.01 p < 0.01 

Pann p < 0.01 p < 0.01 p < 0.01 p < 0.01 

 658 
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