Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-1261
https://doi.org/10.5194/egusphere-2022-1261
23 Dec 2022
 | 23 Dec 2022

Divergent convective outflow in large eddy simulations

Edward Groot and Holger Tost

Abstract. Upper tropospheric outflow is analysed in cloud resolving large eddy simulations. Thereby, the role of convective organisation, latent heating and other factors in upper tropospheric divergent outflow variability from deep convection is diagnosed using a set of about 100 large eddy simulations, because the outflows are thought to be an important feedback from (organised) to large scale atmospheric flows: perturbations in those outflows may sometimes propagate into larger scale perturbations.

Upper tropospheric divergence is found to be controlled by net latent heating and convective organisation. At low precipitation rates isolated convective cells have a stronger mass divergence than squall lines. The squall line divergence is the weakest (relative to the net latent heating) when the outflow is purely 2D, in case of an infinite length squall line. At high precipitation rates the mass divergence discrepancy between the various modes of convection reduces. Hence, overall the magnitude of divergent outflow is explained by the latent heating and the dimensionality of the outflow, which together create a non-linear relation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

02 Jun 2023
Divergent convective outflow in large-eddy simulations
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023,https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
It is shown that the outflow from cumulonimbus clouds or thunderstorms in the upper...
Share