Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-1117
https://doi.org/10.5194/egusphere-2022-1117
10 Nov 2022
 | 10 Nov 2022

The Wasserstein distance as a hydrological objective function

Jared C. Magyar and Malcolm S. Sambridge

Abstract. When working with hydrological data, the ability to quantify the similarity of different datasets is useful. The choice of how to make this quantification has direct influence on the results, with different measures of similarity emphasising particular sources of error (for example, errors in amplitude as opposed to displacements in time and/or space). The Wasserstein distance considers the similarity of mass distributions through a transport lens. In a hydrological context, it measures the ‘effort’ required to rearrange one distribution of water into the other. While being more broadly applicable, particular interest is payed to hydrographs in this work. The Wasserstein distance is adapted for working with hydrographs in two different ways, and tested in a calibration and ‘averaging’ of hydrographs context. This alternate definition of fit is shown successful in accounting for timing errors due to imprecise rainfall measurements. The averaging of an ensemble of hydrographs is shown suitable when differences among the members is in peak shape and timing, but not in total peak volume, where the traditional mean works well.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

06 Mar 2023
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023,https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Measuring the similarity of distributions of water is a useful tool for model calibration and...
Share