Astroclimatic forcing of global climate dynamics and recent extremes: an integrated method and empirical satellite evidence of geo-orbital oscillation modulating ENSO
Abstract. This study demonstrates a robust oscillatory coupling between the El Niño–Southern Oscillation (ENSO) and the index of geo-orbital oscillation (IRGON), integrated within the combined astroclimatic forcing index (C-ACFI). The C-ACFI synthesizes high-precision astronomical variables—solar declination, Earth–Sun distance, and net shortwave radiation anomalies—to quantify radiative forcing density across the Pacific. By applying wavelet coherence analysis (WCA) and cross-correlation functions (CCF) to monthly time series (2000–2025), a statistically significant phase synchronization is identified between orbital geometry and the oceanic Niño index (ONI), linking planetary mechanics to global climate oscillations. A pivotal finding is that interannual precessional drift generates physical displacements in Earth’s orbital position that rival or exceed the planet’s equatorial diameter (12 756 km) within a single annual cycle. Specifically, during 2021–2022, the Earth–Sun distance contracted by −12 387 km in March and expanded by +12 864 km in September relative to the previous year. This rapid orbital oscillation fundamentally reconfigures the tropical Pacific’s latitudinal heat engine, providing the mechanical energy to trigger or sustain extreme ENSO phases. This behavior is quantitatively captured by the IRGON index, which transitioned from 0.7866 in 2021 to −0.4353 in 2022. Furthermore, the recent antagonistic climate extremes of January 2026—characterized by devastating wildfires in the Southern Hemisphere and severe snowstorms in the Northern Hemisphere—align with sustained negative IRGON values, indicating a contrasting orbital position that intensifies net radiation flux imbalances. These findings are corroborated by empirical evidence from satellite-derived sunglint migration (Himawari-8/GOES-17) and MERRA-2 radiative flux oscillations, establishing a physical mechanism for energy transfer from orbital mechanics to terrestrial climate variability. By identifying the orbital driver behind current climate realignments, this study challenges the stochastic interpretation of ENSO and establishes astroclimatology as a foundational framework for climate predictability. Central to this framework is the relative geoenergetic equilibrium (RGE) hypothesis, which posits that the climate system does not return to a fixed baseline but continuously adjusts to unique, non-repeating temporal radiative states driven by constant astroclimatic shifts.
Lo más interesante del trabajo es la idea de que ENSO no es solo caótico, sino que podría estar sincronizado por un forzante externo. La parte orbital me parece provocadora, pero bien pensada. Puede que ahí haya algo que vale la pena seguir explorando ya que la presunción de los climatólogos es que el efecto orbital no es tan significativo como la variabilidad interna del sistema océanos y atmósfera.
Sobre la redacción y presentación de información: creo que está muy prolijo. Me aseguraría de centrar todas las tablas y gráficos, y tratar de que los pies de figura tengan el mismo formato y fuente.