Preprints
https://doi.org/10.5194/egusphere-2026-398
https://doi.org/10.5194/egusphere-2026-398
29 Jan 2026
 | 29 Jan 2026
Status: this preprint is open for discussion and under review for Geoscientific Model Development (GMD).

The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP7

Paulo Ceppi, Alejandro Bodas-Salcedo, Mark D. Zelinka, Timothy Andrews, Florent Brient, Robin Chadwick, Jonathan M. Gregory, Yen-Ting Hwang, Sarah M. Kang, Jennifer E. Kay, Thorsten Mauritsen, Tomoo Ogura, George Tselioudis, Masahiro Watanabe, Mark J. Webb, and Allison A. Wing

Abstract. Cloud processes constitute one of the key uncertainties for climate change projections. The fourth iteration of the Cloud Feedback Model Intercomparison Project, CFMIP4, contributes to the Coupled Model Intercomparison Project phase 7 (CMIP7), by providing a set of global climate model experiments aiming to enhance our understanding of clouds, circulation and climate sensitivity, thereby informing improved projections of future climate change. CFMIP4 targets four knowledge gaps: (1) Physical mechanisms of cloud feedback and adjustment; (2) Dependence of cloud feedback and adjustment on climate base state and on the nature of the forcing; (3) Coupled mechanisms of the sea-surface temperature "pattern effect"; and (4) Coupling of clouds with circulation and precipitation. CFMIP4 contributes four CMIP7 Assessment Fast Track experiments that are central to the quantification of climate feedback and sensitivity in past, present and future climates, essential for process understanding and model evaluation. Furthermore, CFMIP4 supports the joint analysis of models and observations through a data request that includes process and satellite simulator output.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Paulo Ceppi, Alejandro Bodas-Salcedo, Mark D. Zelinka, Timothy Andrews, Florent Brient, Robin Chadwick, Jonathan M. Gregory, Yen-Ting Hwang, Sarah M. Kang, Jennifer E. Kay, Thorsten Mauritsen, Tomoo Ogura, George Tselioudis, Masahiro Watanabe, Mark J. Webb, and Allison A. Wing

Status: open (until 28 Mar 2026)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2026-398', Chen Zhou, 30 Jan 2026 reply
  • RC1: 'Comment on egusphere-2026-398', Anonymous Referee #1, 30 Jan 2026 reply
Paulo Ceppi, Alejandro Bodas-Salcedo, Mark D. Zelinka, Timothy Andrews, Florent Brient, Robin Chadwick, Jonathan M. Gregory, Yen-Ting Hwang, Sarah M. Kang, Jennifer E. Kay, Thorsten Mauritsen, Tomoo Ogura, George Tselioudis, Masahiro Watanabe, Mark J. Webb, and Allison A. Wing
Paulo Ceppi, Alejandro Bodas-Salcedo, Mark D. Zelinka, Timothy Andrews, Florent Brient, Robin Chadwick, Jonathan M. Gregory, Yen-Ting Hwang, Sarah M. Kang, Jennifer E. Kay, Thorsten Mauritsen, Tomoo Ogura, George Tselioudis, Masahiro Watanabe, Mark J. Webb, and Allison A. Wing

Viewed

Total article views: 533 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
346 171 16 533 10 17
  • HTML: 346
  • PDF: 171
  • XML: 16
  • Total: 533
  • BibTeX: 10
  • EndNote: 17
Views and downloads (calculated since 29 Jan 2026)
Cumulative views and downloads (calculated since 29 Jan 2026)

Viewed (geographical distribution)

Total article views: 484 (including HTML, PDF, and XML) Thereof 484 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 19 Feb 2026
Download
Short summary
Clouds constitute a key uncertainty for climate change projections. The Cloud Feedback Model Intercomparison Project (CFMIP) aims to address this challenge by evaluating and understanding clouds and their impacts on atmospheric circulation, precipitation, and climate sensitivity. The present paper describes the CFMIP experiment protocol for the Coupled Model Intercomparison Project phase 7 (CMIP7), and discusses the accompanying science questions and opportunities for progress.
Share