Critical freshwater forcing for AMOC tipping in climate models – compensation matters
Abstract. Ocean and climate models of various complexity have shown that the Atlantic Meridional Overturning Circulation (AMOC) can undergo tipping, i.e., transition abruptly to a state without North Atlantic deep-water formation, as a function of freshwater forcing. Most of these model experiments compensate for the freshwater input to conserve global salinity, with salt being added either at the surface or throughout the ocean volume. However, these two different compensation methods have so far only been compared in a single, coarse-resolution climate model, and therefore little is known robustly about the effect of salinity compensation on the AMOC tipping point. Here, using an ocean model at 1° resolution and an intermediate-complexity coupled climate model, we systematically compare the effect of surface vs volume compensation on the tipping point of the AMOC as diagnosed from quasi-equilibrium experiments using a freshwater flux over the region 20° N–50° N. Salinity compensation at the surface consistently delays AMOC tipping compared to volume compensation. This is mainly because the compensation salinity added over the subpolar North Atlantic counteracts the weakening salinity gradient from freshwater forcing. In contrast, the compensation method does not strongly impact AMOC recovery when tracing the full hysteresis loop. Our results indicate that the distance of present-day climate to the AMOC tipping point with respect to freshwater forcing might have been overestimated in recent modeling studies, compounding the effect of model biases.