Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2025-901
https://doi.org/10.5194/egusphere-2025-901
07 Mar 2025
 | 07 Mar 2025
Status: this preprint is open for discussion and under review for Geochronology (GChron).

Technical Note: Incorporating topographic deflection effects into thermal history modelling

Richard A. Ketcham

Abstract. This contribution describes a set of equations and relations to calculate accurate cooling paths through the 2D temperature field of an exhuming region with periodic topography. A 1D model adequately captures the time-varying component of the system, making the computation efficient. A series of 2D finite element models demonstrate how temperatures below the periodic mid-slope, or mean topography, can be mapped to those below ridges and valleys, and how these transitions vary with topographic period and amplitude and the ratio of the near-surface geotherm to the atmospheric lapse rate. These new calculations are implemented into HeFTy to support multi-sample modelling of samples collected along topographic profiles, particularly for terranes with long-lived topography that exhumed through an inflected temperature field.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
This technical note develops and demonstrates an improvement in how to calculate the...
Share