the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mid-Atlantic U.S. observations of radiocarbon in CO2: fossil and biogenic source partitioning and model evaluation
Abstract. Accurately quantifying regional anthropogenic CO2 fluxes is fundamental to improving our understanding of the carbon cycle and for creating effective carbon mitigation policies, and the radiocarbon to total carbon ratio in atmospheric CO2 (Δ14CO2) is a robust tracer of fossil fuel CO2 that can discriminate between biogenic and fossil fuel CO2 sources. NASA’s ACT-America airborne mission between 2016 and 2019 aimed to improve the accuracy of regional greenhouse gas flux estimates, through refining understanding and characterization of fluxes and flux uncertainties in models. Δ14CO2 observations from 26 flights are presented for examining seasonal CO2 source partitioning in the Mid-Atlantic U.S. Observed variability in boundary layer CO2 at time scales ranging from intra-day to seasonal was largely driven by biogenic CO2 (CO2bio) variability that ranged from -19.7 ppm in summer to 16.2 ppm in fall, while fossil fuel CO2 (CO2ff) variability remained at 3.3 ± 2.0 ppm. Carbonyl sulfide uptake was well-correlated with CO2bio uptake, and examining this relationship, and that between CO2 and CO2bio variability reinforces the seasonal extent of gross primary productivity response throughout ACT-America. We use airborne Δ14CO2 flask sampling alongside in situ carbon monoxide measurements to calculate high-frequency CO2ff and evaluate the magnitude and diurnal variability of modeled CO2ff, deducing likely transport errors in an example flight. Although ACT-America CO2ff signals were attenuated due to broad source regions sampled, results illustrate the value of D14CO2 sampling and observation-based methodologies for regional CO2 flux attribution and evaluation and improvement of modeled CO2.
- Preprint
(4571 KB) - Metadata XML
-
Supplement
(196 KB) - BibTeX
- EndNote
Status: open (until 21 Apr 2025)
Data sets
ACT-America In Situ and Flask Data K .J. Davis et al. https://doi.org/10.3334/ORNLDAAC/1593
ACT-America Flask Data C. Sweeney et al. https://doi.org/10.3334/ORNLDAAC/1575
ACT-America Meteorological and Aircraft Navigational Data M. M. Yang et al. https://doi.org/10.3334/ORNLDAAC/1574
NOAA GGGRN D14CO2 and CO Flask Data B. Baier et al. https://doi.org/10.15138/87ny-6277
WRF-Chem Baseline Simulations for North America, 2016-2019 S. Feng et al. https://doi.org/10.3334/ORNLDAAC/1884
Viewed
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
84 | 13 | 4 | 101 | 13 | 2 | 2 |
- HTML: 84
- PDF: 13
- XML: 4
- Total: 101
- Supplement: 13
- BibTeX: 2
- EndNote: 2
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1