Simulating the Holocene evolution of Ryder Glacier, North Greenland
Abstract. The Greenland Ice Sheet's negative mass balance is driven by a sensitivity to both a warming atmosphere and ocean. The fidelity of ice-sheet models in accounting for ice-ocean interaction is inherently uncertain and often constrained against recent fluctuations in the ice-sheet margin from the previous decades. The geological record can be utilised to contextualise ice-sheet mass loss and understand the drivers of changes at the marine margin across climatic shifts and previous extended warm periods, aiding our understanding of future ice-sheet behaviour. Here, we use the Ice-sheet and Sea-level System Model (ISSM) to explore the Holocene evolution of Ryder Glacier draining into Sherard Osborn Fjord, Northern Greenland. Our modelling results are constrained with terrestrial reconstructions of the paleo-ice sheet margin and an extensive marine sediment record from Sherard Osborn Fjord that details ice dynamics over the past 12.5 ka years. By employing a consistent mesh resolution of <1 km at the ice-ocean boundary, we assess the importance of atmospheric and oceanic changes to Ryder Glacier's Holocene behaviour. Our simulations show that the initial retreat of the ice margin after the Younger Dryas cold period was driven by a warming climate and the resulting fluctuations in Surface Mass Balance. Changing atmospheric conditions remain the first order control in the timing of ice retreat during the Holocene. We find ice-ocean interactions become increasingly fundamental to Ryder's retreat in the mid-Holocene; with higher than contemporary melt rates required to force grounding line retreat and capture the collapse of the ice tongue during the Holocene Thermal Maximum. Regrowth of the tongue during the neo-glacial cooling of the late Holocene is necessary to advance both the terrestrial and marine margins of the glacier. Our results stress the importance of accurately resolving the ice-ocean interface in modelling efforts over centennial and millennial time scales, in particular the role of floating ice tongues and submarine melt, and provide vital analogous for the future evolution of Ryder in a warming climate.