Preprints
https://doi.org/10.5194/egusphere-2025-572
https://doi.org/10.5194/egusphere-2025-572
07 Mar 2025
 | 07 Mar 2025
Status: this preprint is open for discussion and under review for SOIL (SOIL).

In silico analysis of carbon stabilisation by plant and soil microbes for different weather scenarios

Mona Giraud, Ahmet Kürşad Sırcan, Thilo Streck, Daniel Leitner, Guillaume Lobet, Holger Pagel, and Andrea Schnepf

Abstract. A plant's development is strongly linked to the water and carbon (C) flows in the soil-plant-atmosphere continuum. Ongoing climate shifts will alter the water and C cycles and affect plant phenotypes. Comprehensive models that simulate mechanistically and dynamically the feedback loops between water and C fluxes in the soil-plant system are useful tools to evaluate the sustainability of genotype-environment-management combinations that do not yet exist. In this study, we present the equations and implementation of a rhizosphere-soil model within the CPlantBox framework, a functional-structural plant model that represents plant processes and plant-soil interactions. The multi-scale plant-rhizosphere-soil coupling scheme previously used for CPlantBox was likewise updated, among others to include an implicit time-stepping. The model was implemented to simulate the effect of dry spells occurring at different plant development stages, and for different soil biokinetic parametrisations of microbial dynamics in soil. We could observe diverging results according to the date of occurrence of the dry spells and soil parametrisations. For instance, an earlier dry spell led to a lower cumulative plant C release, while later dry spells led to higher C input to the soil. For more reactive microbial communities, this higher C input caused a strong increase in CO2 emissions, while, for the same weather scenario, we observed a lasting stabilisation of soil C with less reactive communities. This model can be used to gain insight into C and water flows at the plant scale, and the influence of soil-plant interactions on C cycling in soil.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Mona Giraud, Ahmet Kürşad Sırcan, Thilo Streck, Daniel Leitner, Guillaume Lobet, Holger Pagel, and Andrea Schnepf

Status: open (until 23 Apr 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Mona Giraud, Ahmet Kürşad Sırcan, Thilo Streck, Daniel Leitner, Guillaume Lobet, Holger Pagel, and Andrea Schnepf
Mona Giraud, Ahmet Kürşad Sırcan, Thilo Streck, Daniel Leitner, Guillaume Lobet, Holger Pagel, and Andrea Schnepf

Viewed

Total article views: 104 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
87 15 2 104 39 0 0
  • HTML: 87
  • PDF: 15
  • XML: 2
  • Total: 104
  • Supplement: 39
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 07 Mar 2025)
Cumulative views and downloads (calculated since 07 Mar 2025)

Viewed (geographical distribution)

Total article views: 106 (including HTML, PDF, and XML) Thereof 106 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Mar 2025
Download
Short summary
We developed a multiscale simulation model that combines 3D plant architecture with carbon cycling in the rhizosphere and soil to understand how dry spells impact carbon and water flows, focusing on the activity of the soil microbes. We found that the microbial communities’ characteristics and dry spells’ start dates significantly affect rhizosphere CO2 emissions and carbon cycling. This model can help understand the effects of climate change on plant growth and soil organic matter dynamics.
Share