Horizontal transport on the continental shelf driven by periodic rotary wind stress
Abstract. Wind driven circulation on a linearly sloping continental shelf is studied by employing the Lagrangian equations of motion forced by periodic rotary wind stress. The analysis yields explicit approximate expressions for the water column trajectories in the longshore and cross-shore directions, and these expressions are verified by numerical integration of the governing nonlinear equations. The periodic rotary wind stress generates a steady longshore drift directed with land to its left when the wind rotates counterclockwise at sub-inertial frequencies and with land to its right in all other frequencies. Counterclockwise rotation of the wind at the local inertial frequency results in a strong resonance manifested in very fast longshore drift.
 
 
                         
                         
                         
                        



 
                 
                 
                 
                