Preprints
https://doi.org/10.5194/egusphere-2025-4960
https://doi.org/10.5194/egusphere-2025-4960
03 Nov 2025
 | 03 Nov 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Rapid formation of hydroxymethyl hydroperoxide and its vital role in methanesulfonic acid-methylamine nucleation: impacts of urban industrial and forested areas

Rongrong Li, Zeyao Li, Chengyan Zhang, Rui Wang, Jihuan Yang, Heran Cui, Xuanye Li, Nini Huo, and Tianlei Zhang

Abstract. Organic peroxides are widely recognized as important contributors to secondary organic aerosols formation. Among these, hydroxymethyl hydroperoxide (HMHP) is a common species found in both the gas phase and fine aerosols. Despite its abundance, the molecular-level formation of HMHP through methanesulfonic acid (MSA)-catalyzed hydrolysis of CH2OO, particularly in the gas phase and at the air-water interface, remains insufficiently examined. Moreover, the role of HMHP in new particle formation (NPF) has not been fully elucidated. Herein, we employ quantum chemical calculations together with Born-Oppenheimer molecular dynamics simulations to investigate HMHP formation from CH2OO hydrolysis with MSA under both gas phase and interfacial conditions. Our results show that HMHP forms rapidly and stably in both environments. Further analysis using the atmospheric cluster dynamics code reveals that HMHP not only enhances the clustering stability of MSA-methylamine (MA) clusters, but also exerts a direct role in promoting MSA-MA nucleation. Importantly, in regions with elevated HMHP concentrations (3.00 × 1010 - 1.25 × 1011 molecules · cm-3), such as Niwot Ridge and Southeastern United States, the HMHP-involved pathways contribute unexpectedly up to 42 % and 59 % of total nucleation flux at 258.15 K, respectively. These findings provide new insights into HMHP formation pathways and the efficient MSA-MA-HMHP nucleation mechanism, offering a plausible explanation for the frequent and intense NPF events observed in continental regions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Rongrong Li, Zeyao Li, Chengyan Zhang, Rui Wang, Jihuan Yang, Heran Cui, Xuanye Li, Nini Huo, and Tianlei Zhang

Status: open (until 15 Dec 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Rongrong Li, Zeyao Li, Chengyan Zhang, Rui Wang, Jihuan Yang, Heran Cui, Xuanye Li, Nini Huo, and Tianlei Zhang
Rongrong Li, Zeyao Li, Chengyan Zhang, Rui Wang, Jihuan Yang, Heran Cui, Xuanye Li, Nini Huo, and Tianlei Zhang
Metrics will be available soon.
Latest update: 03 Nov 2025
Download
Short summary
This study investigates the formation of hydroxymethyl hydroperoxide (HMHP) through methanesulfonic acid (MSA)-catalyzed hydrolysis of CH2OO in the gas phase and at the air-water interface. HMHP forms rapidly and stably in both environments. Further analysis shows that HMHP enhances the stability of MSA-methylamine (MA) clusters and highlights HMHP's key role in MSA-MA-HMHP nucleation, especially in urban and forested regions.
Share