Preprints
https://doi.org/10.5194/egusphere-2025-4642
https://doi.org/10.5194/egusphere-2025-4642
06 Oct 2025
 | 06 Oct 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Full-scale spectra of 15-year time series of near-surface horizontal wind speed on the north slope of Mt. Everest

Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi

Abstract. Wind speed spectral analysis is of great importance for understanding boundary-layer turbulence characteristics, developing atmospheric numerical model, and assessing wind energy. 15-year time series of near-surface horizontal wind data from the national Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes (QOMS) on the north slope of Mt. Everest has been used to investigate the full-scale wind spectrum in the frequency range from about 10 yr-1 to 5 Hz. The annual average wind speed showed almost no detectable trend from 2006 to 2018 at the QOMS station. Three peaks were identified in the full-scale spectra at the frequencies of 1 yr-1, 1 day-1, and 12 hr-1, respectively. The 12 hr-1 peak is evident in spring and summer but disappears in winter, indicating the seasonal differences in local circulations at the QOMS station. The spectral density was the highest on the low-frequency side of the diurnal peak and in the microscale frequency range (f ≥ 1×10-3 Hz) in winter, indicating frequent synoptic weather events and vigorous turbulent intensity generated by shear due to strong wind during winter. An obvious spectral gap around the frequency of 4.5×10-4 Hz was observed in the composite seasonal and daily spectrum in winter, while the spectral gap disappeared in summer. The combination of low spectral density in the mesoscale frequency range, high spectral density in the microscale frequency range, and strong turbulence intensity contributes to the spectral gap in winter.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi

Status: open (until 17 Nov 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi
Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi

Viewed

Total article views: 26 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
26 0 0 26 0 0
  • HTML: 26
  • PDF: 0
  • XML: 0
  • Total: 26
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 06 Oct 2025)
Cumulative views and downloads (calculated since 06 Oct 2025)

Viewed (geographical distribution)

Total article views: 26 (including HTML, PDF, and XML) Thereof 26 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 07 Oct 2025
Download
Short summary
Wind speed spectra analysis is very important for understanding boundary layer turbulence characteristics, atmospheric numerical model development, and wind energy assessment. However, wind speed spectra studies in mountainous areas are extremely scarce. In this study, using a 15-year time series of wind speed observed by a PBL tower and eddy-covariance tower at a site on the north slope of Mt. Everest, we investigated the characteristics of wind speed and wind speed spectrum.
Share