Enhancing 2D Deep Seismic Reflection Imaging Using Shot Domain Regularization: A Case Study from the Jiangnan Orogenic Belt, South China
Abstract. Deep seismic reflection is a key method for investigating plate tectonics, as it enables detailed imaging of lithospheric structures – particularly within the crust and upper mantle. It plays a crucial role in understanding crustal evolution and identifying mineral enrichment zones. However, during data acquisition, deviations from the planned shot and receiver locations often occur due to surface constraints or other logistical challenges. These deviations result in irregular seismic data that can introduce significant migration artifacts during processing, ultimately reducing data quality and hindering the interpretation of deep geological structures. To address this issue, we evaluated four data regularization strategies based on anti-aliasing Matching pursuit Fourier interpolation using a 2D deep seismic reflection dataset from the central Jiangnan Orogenic Belt. Among these, the method that involves regularizing and infilling shot gathers at 100-meter intervals produced the most effective results. Compared to legacy contractor-processed data, this method achieved a higher signal-to-noise ratio and improved seismic resolution. The superiority of that method was further confirmed through enhanced imaging in the pre-stack time migration results. These findings highlight the importance of shot domain regularization prior to migration in deep seismic reflection surveys.