Monsoons, plumes, and blooms: intraseasonal variability of subsurface primary productivity in the Bay of Bengal
Abstract. During the southwest monsoon, seasonal storms bring torrential rainfall to the South Asian subcontinent and the northern Indian Ocean. Dense cloud cover limits the amount of sunlight that reaches the ocean surface, and sediment-laden river runoff limits the depths to which light can penetrate. Changing light availability should affect phytoplankton primary productivity and its dependent biogeochemical processes, yet little is known about how subtropical weather is linked to ecosystem processes below the ocean’s surface. Here, using novel physical and bio-optical measurements from an array of free-drifting, autonomous systems in the Bay of Bengal, we show that the onset of cloudy conditions associated with 'active' monsoon conditions led to >50 % reduction in gross chlorophyll productivity (GCP) near the subsurface chlorophyll maximum (SCM) relative to sunny 'break' conditions. Optical backscatter measurements confirm chlorophyll fluorescence fluctuations correspond to biomass variability of a similar scale. Simultaneous bioacoustic measurements collected onboard the autonomous platforms suggest this intraseasonal variability in SCM chlorophyll and biomass generated a response in higher trophic levels. Long-term measurements from biogeochemical (BGC) Argo floats in the bay confirm the presence of intraseasonal oscillations in chlorophyll-a concentration with days-to-weeks variability in magnitude similar to the regional annual cycle in the region. Our findings demonstrate that intraseasonal subtropical air-sea variability modulates important regional biogeochemical ocean processes in the Northern Indian Ocean with implications for the Indian Ocean carbon cycle.