Forest conversion reduces soil water retention in tropical rainforest by altering soil properties
Abstract. Extensive primary forests are being converted to secondary forests and plantation owing to human activities in recent decades, which has substantial effects on soil hydrological processes. However, the potential impact of forest conversion on soil water retention remains poorly understood. In this study, tropical primary forests (PF), secondary forests (SF) and rubber monocultures (RM) converted from tropical primary forests were selected on Hainan Island, to examine the variation in soil water retention across three forest types and their controlling factors. We found that the primary forests exhibited significantly greater water retention capacity than secondary forests and rubber monocultures. However, secondary forests showed higher water retention than rubber monocultures in shallow soils but lower in deep soils. Similarly, primary forests demonstrated significantly greater soil water storage capacity than secondary forests and rubber monocultures, but secondary forests and rubber monocultures had obvious seasonal variations, which showed that secondary forests had a higher water storage capacity than rubber monocultures in the rainy season, and display opposite pattern in the dry season. The saturated hydraulic conductivity in primary forests was higher than that in secondary forests and rubber monoculture. Furthermore, forest types influenced soil properties, with secondary forests and rubber monoculture showing higher bulk density but lower soil capillary porosity compared with primary forests. Among all factors, soil porosity emerged as the dominant controller of water retention, where total porosity and capillary porosity accounted for 31.49 % and 30.61 % of variation respectively, while soil bulk density contributed relatively less (12.46 %). These findings indicate that the conversion of tropical primary forests to secondary forests and rubber monocultures is detrimental to soil water retention and storage. Our results can provide scientific insights for forest development and management in the tropical rainforest.