Preprints
https://doi.org/10.5194/egusphere-2025-3597
https://doi.org/10.5194/egusphere-2025-3597
13 Aug 2025
 | 13 Aug 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Atmospheric lifetime of sulfur hexafluoride (SF6) and five other trace gases in the BASCOE model driven by three reanalyses

Sarah Vervalcke, Quentin Errera, Simon Chabrillat, Marc Op de beeck, Thomas Reddmann, Gabriele Stiller, Roland Eichinger, and Emmanuel Mahieu

Abstract. In this work, sulfur hexafluoride (SF6), which is often used as a tracer for stratospheric transport due to its inertness in the stratosphere and nearly linear growth rate in the troposphere, is included in the chemistry transport model (CTM) of the Belgian Assimilation System for Chemical ObsErvations (BASCOE). Sink and recovery reactions for this species are implemented in the model, which has a top in the mesosphere at 0.01 hPa. The simulated SF6 distributions are compared with MIPAS and ACE-FTS observations and the global atmospheric lifetime is computed from CTM runs driven by three recent meteorological reanalyses: ERA5, MERRA2 and JRA-3Q. The results show that BASCOE SF6 profiles are generally within 10 % of the satellite observations below 10 hPa, although discrepancies increase at higher altitudes. The global atmospheric lifetime is used as an additional diagnostic for the implementation of the chemistry in the mesosphere, where satellite measurements are not available. The derived SF6 lifetimes are 2646 years with ERA5, 1909 years with MERRA2 and 2147 years with JRA-3Q, in accordance with recent literature. Due to the large spread of published lifetimes for SF6, the study is extended to N2O, CH4, CFC-11, CFC-12 and HCFC-22, to validate the SF6 results. The lifetimes for these species are in agreement with previously reported values, and their spread between simulations is smaller compared to SF6. This analysis highlights the sensitivity of SF6 to the input reanalysis data sets and thus to differences in dynamics.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Sarah Vervalcke, Quentin Errera, Simon Chabrillat, Marc Op de beeck, Thomas Reddmann, Gabriele Stiller, Roland Eichinger, and Emmanuel Mahieu

Status: open (until 01 Oct 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Sarah Vervalcke, Quentin Errera, Simon Chabrillat, Marc Op de beeck, Thomas Reddmann, Gabriele Stiller, Roland Eichinger, and Emmanuel Mahieu
Sarah Vervalcke, Quentin Errera, Simon Chabrillat, Marc Op de beeck, Thomas Reddmann, Gabriele Stiller, Roland Eichinger, and Emmanuel Mahieu

Viewed

Total article views: 1,120 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,104 13 3 1,120 14 14 21
  • HTML: 1,104
  • PDF: 13
  • XML: 3
  • Total: 1,120
  • Supplement: 14
  • BibTeX: 14
  • EndNote: 21
Views and downloads (calculated since 13 Aug 2025)
Cumulative views and downloads (calculated since 13 Aug 2025)

Viewed (geographical distribution)

Total article views: 1,037 (including HTML, PDF, and XML) Thereof 1,037 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Sep 2025
Download
Short summary
This study presents three simulations of atmospheric chemistry with the BASCOE model, driven by different meteorological data sets. These simulations include newly implemented SF6 chemistry, useful for stratospheric transport studies. Results compare well with satellite observations. The lifetime of six trace gases is computed and agrees with the literature, but SF6 shows larger sensitivity to the choice of meteorology. The lifetime of SF6 ranges from 1900 to 2600 years.
Share