Preprints
https://doi.org/10.5194/egusphere-2025-2510
https://doi.org/10.5194/egusphere-2025-2510
03 Jul 2025
 | 03 Jul 2025

Incorporation of lumped IVOC emissions into the ORACLE model (V1.1): A multi-product framework for assessing global SOA formation from internal combustion engines

Susanne M. C. Scholz, Vlassis A. Karydis, Georgios I. Gkatzelis, Hendrik Fuchs, Spyros N. Pandis, and Alexandra P. Tsimpidi

Abstract. Secondary organic aerosol (SOA) is a major component of particulate matter but is often underpredicted in chemistry climate models. Recent advances in measuring and resolving the chemically complex structure of intermediate volatile organic compounds (IVOC) have shown that IVOCs, despite their high SOA yields, have long been underrepresented in models. These compounds are key precursors of SOA from emissions in the road transport sector and significantly influence SOA formation. Understanding vehicle emissions, their chemistry, and their SOA-forming potential is essential for accurately estimating their contributions to atmospheric SOA and global organic aerosol loads. To improve this understanding, we have updated the organic module ORACLE in the global chemistry climate model EMAC. The existing IVOC representation was based on scaled organic carbon (OC) emissions and a highly parameterized volatility basis set (VBS) which underestimated global IVOC emissions and oversimplified their chemistry. Here, we replaced this approach with a lumped species framework, in which experimental data for gasoline and diesel emissions were grouped into seven lumped species based on their chemical properties and hydroxylation potentials. These species were linked to adjusted emission inventories for regional diesel and gasoline consumption. A 10-year simulation with the updated ORACLE-IVOC model resulted in significant changes. The global atmospheric burden of road transport IVOC-derived SOA (SOA-iv) increased by 1 order of magnitude, from 0.014 Tg to 0.13 Tg. The composition of road transport organic aerosol (OA) shifted, with SOA-iv contributing 2.5 to 13 times more than the primary organic aerosol (POA) and SOA derived from semi-volatile organic compounds combined. In the results using the previous model, this ratio was between 0.4 and 1.1. The geographical distribution of OA also changed. Regions rich in gasoline relative to diesel emissions experienced higher concentration increases, and remote areas experienced elevated concentrations due to more efficient long-range transport of the new lumped IVOC species. Overall, these changes led to a significant increase in the contribution of road transport to total anthropogenic SOA-iv from an average value of 3 % to 35 %.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

18 Dec 2025
Incorporation of lumped IVOC emissions into the ORACLE model (V1.1): a multi-product framework for assessing global SOA formation from internal combustion engines
Susanne M. C. Scholz, Vlassis A. Karydis, Georgios I. Gkatzelis, Hendrik Fuchs, Spyros N. Pandis, and Alexandra P. Tsimpidi
Geosci. Model Dev., 18, 10119–10142, https://doi.org/10.5194/gmd-18-10119-2025,https://doi.org/10.5194/gmd-18-10119-2025, 2025
Short summary
Susanne M. C. Scholz, Vlassis A. Karydis, Georgios I. Gkatzelis, Hendrik Fuchs, Spyros N. Pandis, and Alexandra P. Tsimpidi

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-2510', Anonymous Referee #1, 12 Aug 2025
  • RC2: 'Comment on egusphere-2025-2510', Anonymous Referee #2, 30 Aug 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-2510', Anonymous Referee #1, 12 Aug 2025
  • RC2: 'Comment on egusphere-2025-2510', Anonymous Referee #2, 30 Aug 2025

Peer review completion

AR – Author's response | RR – Referee report | ED – Editor decision | EF – Editorial file upload
AR by Alexandra Tsimpidi on behalf of the Authors (30 Oct 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (25 Nov 2025) by Jason Williams
AR by Alexandra Tsimpidi on behalf of the Authors (03 Dec 2025)

Journal article(s) based on this preprint

18 Dec 2025
Incorporation of lumped IVOC emissions into the ORACLE model (V1.1): a multi-product framework for assessing global SOA formation from internal combustion engines
Susanne M. C. Scholz, Vlassis A. Karydis, Georgios I. Gkatzelis, Hendrik Fuchs, Spyros N. Pandis, and Alexandra P. Tsimpidi
Geosci. Model Dev., 18, 10119–10142, https://doi.org/10.5194/gmd-18-10119-2025,https://doi.org/10.5194/gmd-18-10119-2025, 2025
Short summary
Susanne M. C. Scholz, Vlassis A. Karydis, Georgios I. Gkatzelis, Hendrik Fuchs, Spyros N. Pandis, and Alexandra P. Tsimpidi
Susanne M. C. Scholz, Vlassis A. Karydis, Georgios I. Gkatzelis, Hendrik Fuchs, Spyros N. Pandis, and Alexandra P. Tsimpidi

Viewed

Total article views: 2,166 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,057 77 32 2,166 51 39 43
  • HTML: 2,057
  • PDF: 77
  • XML: 32
  • Total: 2,166
  • Supplement: 51
  • BibTeX: 39
  • EndNote: 43
Views and downloads (calculated since 03 Jul 2025)
Cumulative views and downloads (calculated since 03 Jul 2025)

Viewed (geographical distribution)

Total article views: 2,107 (including HTML, PDF, and XML) Thereof 2,107 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Dec 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We studied how pollution from cars and trucks contributes to tiny airborne particles that affect air quality and climate. These particles, called secondary organic aerosols, were often underestimated in global models. By improving how certain overlooked emissions from fuel use are represented in our model, we found that their impact is much larger than previously thought. Our results suggest that road traffic plays a far greater role in global air pollution than earlier estimates showed.
Share