Preprints
https://doi.org/10.5194/egusphere-2025-21
https://doi.org/10.5194/egusphere-2025-21
29 Jan 2025
 | 29 Jan 2025
Status: this preprint is open for discussion and under review for Biogeosciences (BG).

Burn severity and vegetation type control phosphorus concentration, molecular composition, and mobilization

Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg

Abstract. Shifting phosphorus (P) dynamics after wildfires can have cascading impacts from terrestrial to aquatic environments. However, it is unclear if post-fire responses are primarily driven by changes to the molecular composition of the charred material or from the transport of P-containing compounds. We used laboratory leaching experiments of Douglas-fir forest and sagebrush shrubland chars to examine how the potential mobility of P compounds is influenced by different burn severities. Burning produced a 6.9- and 29- fold increase in particulate P mobilization, but a 3.8- and 30.5- fold decrease in aqueous P released for Douglas-fir forest and sagebrush shrubland, respectively. P compound mobilization in the particulate phase was controlled by solid char total P concentrations while the aqueous phase was driven by solubility changes of molecular species. Nuclear magnetic resonance and X-ray absorption near edge structure on the solid chars indicated that organic orthophosphate monoester and diester species were thermally mineralized to inorganic P moieties with burning in both vegetation types. This coincided with the production of calcium- and magnesium-bound inorganic P compounds. With increasing burn severity there were systematic shifts in P concentration and composition— higher severity chars mobilized P compounds in the particulate phase, although the magnitude of change was vegetation specific. Our results indicate a post-fire transformation to both the composition of the solid charred material and to how P compounds are mobilized, which may influence its environmental cycling and fate.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg

Status: open (until 12 Mar 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg

Data sets

Organic Matter Concentration and Composition of Experimentally Burned Open Air and Muffle Furnace Vegetation Chars across Differing Burn Severity and Feedstock Types from Pacific Northwest, USA (V3) S. Grieger et al. https://data.ess-dive.lbl.gov/view/doi:10.15485/1894135

Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg

Viewed

Total article views: 62 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
49 9 4 62 13 1 1
  • HTML: 49
  • PDF: 9
  • XML: 4
  • Total: 62
  • Supplement: 13
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 29 Jan 2025)
Cumulative views and downloads (calculated since 29 Jan 2025)

Viewed (geographical distribution)

Total article views: 53 (including HTML, PDF, and XML) Thereof 53 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 06 Feb 2025
Download
Short summary
Wildfires impact nutrient cycles on land and in water. We used burning experiments to understand the types of phosphorous (P), an essential nutrient, that might be released to the environment after different types of fires. We found that the amount of P moving through the environment post-fire is dependent on the type of vegetation and degree of burning which may influence when and where this material is processed or stored.
Share