Preprints
https://doi.org/10.5194/egusphere-2025-1792
https://doi.org/10.5194/egusphere-2025-1792
03 Jun 2025
 | 03 Jun 2025
Status: this preprint is open for discussion and under review for Biogeosciences (BG).

Enhanced CO2 Emissions Driven by Flooding in a Simulation of Palsa Degradation

Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat

Abstract. Climate change is predicted to put most of the permafrost habitats in the discontinuous zone, at risk of disappearing within the next few decades. On a decadal scale, abrupt permafrost thaw may result in larger C losses than gradual permafrost thaw, but drivers of C emissions are poorly understood. To investigate this, we measured C emissions from a palsa under simulated abrupt and gradual thaw scenarios. We continuously measured CO2 and CH4 emissions while deepening the permafrost table under flooded (abrupt) and non-flooded (gradual) conditions. Higher soil-moisture during permafrost thaw is commonly associated with decreasing CO2 and increasing CH4 emissions. Interestingly, our results showed consistent CH4 uptake across all the cores from the palsa and a twofold increase in CO2 emissions under abrupt thaw (flooded conditions). Peat quality analysis (FTIR) showed a higher degradation of C compounds at the permafrost table, likely due to the physical disruption of soil organic matter and the redox changes in the active layer caused by flooding. Averaged CO2 emissions were significantly higher under abrupt thaw (150 mg-CO2. m-2.h-1) compared to gradual thaw (70 mg-CO2. m-2.h-1), with limited permafrost peat contribution. Conversely, permafrost thaw under gradual thaw contributed to a twofold increase in CO2 emissions (57 to 98 mg-CO2. m-3.h-1). Finally, CO2 emissions increased with depth in saturated fens, suggesting that deep-rooted vegetation could be a transport pathway for CO2 outside the growing season. Our findings underline the potential for increased CO2 emissions during the transition to fen conditions under abrupt thaw scenarios and therefore the need for in-situ measurements.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat

Status: open (until 28 Jul 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-1792', Anonymous Referee #1, 18 Jun 2025 reply
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat

Viewed

Total article views: 135 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
97 30 8 135 38 8 7
  • HTML: 97
  • PDF: 30
  • XML: 8
  • Total: 135
  • Supplement: 38
  • BibTeX: 8
  • EndNote: 7
Views and downloads (calculated since 03 Jun 2025)
Cumulative views and downloads (calculated since 03 Jun 2025)

Viewed (geographical distribution)

Total article views: 136 (including HTML, PDF, and XML) Thereof 136 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 23 Jun 2025
Download
Short summary
Palsas are peat permafrost mounds underlain by ice-rich permafrost. Due to climate change, they could disappeare by the end of the century. When palsas thaw, changes occur in hydrological conditions affecting the carbon (C) cycle. In our study, we simulated permafrost thaw under different water treatments using 1-meter soil columns from a palsa. We measured CH4 and CO2 emissions for 3-month incubation. Our results show that following thaw, flooding the cores leads to increased CO2 emissions.
Share