Preprints
https://doi.org/10.5194/egusphere-2025-1366
https://doi.org/10.5194/egusphere-2025-1366
16 Jun 2025
 | 16 Jun 2025

Aerosol dry deposition fluxes on snow during the ALPACA campaign in Fairbanks, Alaska

Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari

Abstract. A comprehensive study of aerosol exchange surface fluxes was conducted at a suburban site in Fairbanks (Alaska) during the Arctic winter as part of the ALPACA experiment. Aerosol fluxes were measured by an eddy covariance system on a snow-covered field located at the University of Alaska Fairbanks (UAF) Farm site from January 26th to February 17th, 2022. In general, bidirectional (emission and deposition) fluxes were measured at the site. Median deposition velocities were 0.61, 0.04, and 8.73 mm s⁻¹ for ultrafine (< 50 nm), accumulation (0.25–0.8 µm), and quasi-coarse (0.8–3 µm) particles, respectively. Anticyclonic synoptic meteorological conditions enhanced atmospheric stagnation and favoured pollutant accumulation near the surface, whereas cyclonic conditions increased aerosol dispersion, thus reducing deposition rates. Despite the frequent conditions of atmospheric stability and pronounced temperature inversions resulting from the strong surface radiative cooling, turbulence was generated mechanically by wind friction, leading to particle deposition. Our findings provide quantitative evidence that wintertime aerosol dry deposition in Arctic urban areas contributes significantly to pollutant accumulation in the snowpack, potentially enhancing contaminant remobilization during snowmelt. Finally, this study provides data for improving aerosol transport models and understanding pollutant-snow interactions in cold urban regions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-1366', Anonymous Referee #1, 26 Jul 2025
  • RC2: 'Comment on egusphere-2025-1366', Anonymous Referee #2, 05 Aug 2025
Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari
Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari

Viewed

Total article views: 406 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
349 41 16 406 10 27
  • HTML: 349
  • PDF: 41
  • XML: 16
  • Total: 406
  • BibTeX: 10
  • EndNote: 27
Views and downloads (calculated since 16 Jun 2025)
Cumulative views and downloads (calculated since 16 Jun 2025)

Viewed (geographical distribution)

Total article views: 403 (including HTML, PDF, and XML) Thereof 403 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 04 Sep 2025
Download
Short summary
A study in Fairbanks, Alaska, measured winter aerosol fluxes on snow. Both emission and deposition occurred, with larger particles settling faster. Weather influenced dispersion and deposition, while wind-driven turbulence enhanced deposition despite stable conditions. Results show aerosol accumulation in snow impacts pollution and snowmelt. Findings help improve aerosol models and pollution studies in cold cities.
Share