Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2025-1280
https://doi.org/10.5194/egusphere-2025-1280
27 Mar 2025
 | 27 Mar 2025
Status: this preprint is open for discussion and under review for Biogeosciences (BG).

Mature riparian alder forest acts as a strong and consistent carbon sink

Alisa Krasnova, Kaido Soosaar, Svyatoslav Rogozin, Dmitrii Krasnov, and Ülo Mander

Abstract. Alder forests are widely spread across Northern Hemisphere, frequently occupying riparian buffer zones and playing a key role in enhancing soil fertility through symbiosis with nitrogen-fixing bacteria. Despite their ecological significance, studies on carbon (C) and water (H2O) exchange in alder forests remain scarce, particularly in the context of hydroclimatic variability and extreme weather events. In this study, we used eddy-covariance flux measurements from three contrasting years to assess the C balance and H2O exchange of a mature riparian grey alder forest in the hemiboreal zone in Estonia. The site was a strong and consistent carbon sink with annual net ecosystem exchange (NEE) ranging from -496 to -663 g C m⁻² y⁻¹, gross primary production (GPP) from -1258 to -1420 g C m⁻² y⁻¹ and ecosystem respiration (ER) from 595 to 923 g C m⁻² y⁻¹. Evapotranspiration (ET) varied from 194 to 342 kg H2O m⁻² y⁻¹ and ecosystem water use efficiency (EWUE) was 4.2 – 6.5 g C kg H2O-1. The drought and heatwave year (2018) featured the highest net carbon uptake, driven by an increase in GPP during spring and a reduction in ER during late summer and autumn. A minor impact of drought on GPP combined with a 35 % reduction in ET in 2018 lead to peak values of EWUE in response to H2O limitation. In 2019, we found no evidence of a short-term drought legacy effect, as carbon exchange components recovered to the 2017 levels and ET was the highest out of years. Given that this forest is beyond the typical harvestable age, its strong and consistent carbon sequestration, combined with high short-term resilience, provides valuable insights for sustainable forest management. These findings highlight the potential of riparian grey alder forests to maintain productivity under hydroclimatic variability, reinforcing their role in regional carbon cycling as a part of natural climate mitigation solutions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
Riparian grey alder forests are important for carbon and water cycling, yet their response to...
Share