the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
QBOi El Niño Southern Oscillation experiments: Assessing relationships between ENSO, MJO, and QBO
Abstract. This study uses an ensemble of climate model experiments coordinated by the Quasi-Biennial Oscillation initiative (QBOi) to analyze the Madden-Julian Oscillation (MJO) in the presence of either perpetual El Niño or La Niña sea surface temperatures during boreal winter. In addition to the prescribed El Niño Southern Oscillation (ENSO) conditions, the nine models internally generate QBOs, meaning each may influence the MJO. The diagnostics used include wavenumber-frequency spectra of tropical convective and dynamical fields, measures of MJO lifetime, an evaluation of MJO diversity and visualizations of MJO vertical structure, as well as an assessment of QBO morphology and the QBO’s impact on tropical convection. Kelvin wave spectral power increases in the El Niño simulations whereas equatorial Rossby waves power is stronger in the La Niña simulations. Consistent with the reported relationship between these waves and the MJO, all models simulate faster MJO propagation under El Niño conditions. This change in speed is corroborated by the MJO diversity analysis, which reveals that models better reproduce the observed “fast propagating” and “standing” MJO archetypes given perpetual El Niño and La Niña, respectively. Regardless of ENSO, QBO descent into the lower stratosphere is underestimated and we detect little QBO influence on tropical tropopause stability and MJO activity. With little influence from the QBO on the MJO activity in these runs, we can be confident that the aforementioned changes in the MJO indeed arise from the different ENSO boundary conditions.
- Preprint
(5466 KB) - Metadata XML
-
Supplement
(225 KB) - BibTeX
- EndNote
Status: open (until 04 Mar 2025)