Preprints
https://doi.org/10.5194/egusphere-2024-3606
https://doi.org/10.5194/egusphere-2024-3606
09 Jan 2025
 | 09 Jan 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Impact of Convectively Coupled Tropical Waves on the composition and vertical structure of the atmosphere above Cabo Verde in September 2021 during the CADDIWA campaign

Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz

Abstract. In summer, Mixed Rossby Gravity Waves/Tropical Disturbances (MRG-TD) are known to drive intraseasonal humidity variability in the northeastern Atlantic troposphere, modulated by Equatorial Rossby (ER) and Kelvin waves. However, their impact on dust remains poorly understood, and MRG-TD tracks are often mingled in the literature. During the Clouds-Atmosphere Dynamics-Dust Interaction in West Africa (CADDIWA) campaign in September 2021, in-situ and remote sensing data (dropsondes, radiosondes, GNSS, and IASI) were used to investigate the 3D impact of tropical waves on dust and thermodynamics over Cape Verde. The distinct contributions of Kelvin waves, ER, and MRG-TD were isolated using frequency-wave number filtering of Total Column Water Vapor (TCWV). The latter was efficiently split into southern and northern-track African Easterly Waves using distinct frequency windows (respectively MRG-TD1 and MRG-TD2) and enabled us to demonstrate their distinct horizontal structures and impacts. ER waves mainly impacted thermodynamics above 750 hPa, MRG-TD1 affected jet-level thermodynamics, and MRG-TD2 modulated moisture in the lower troposphere. MRG-TD2 was identified as the main driver of dust events over Cape Verde in September 2021. Tropical cyclogenesis was linked to interactions among multiple tropical waves. Notably, a delay of up to 2 days was observed between Kelvin wave interactions with MRG-TD1 and cyclone formation, consistent with previous findings. These results highlight the critical role of tropical wave interactions in cyclogenesis and underscore their potential for improving forecasting.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz

Status: open (until 20 Feb 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz
Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz

Viewed

Total article views: 27 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
22 2 3 27 0 0
  • HTML: 22
  • PDF: 2
  • XML: 3
  • Total: 27
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 09 Jan 2025)
Cumulative views and downloads (calculated since 09 Jan 2025)

Viewed (geographical distribution)

Total article views: 27 (including HTML, PDF, and XML) Thereof 27 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 10 Jan 2025
Download
Short summary
Tropical waves structure the atmosphere. Four types of tropical waves (ER, Kelvin, MRG-TD1, and MRG-TD2) are studied using filters, satellite measurements, and in situ data from the Clouds-Atmosphere Dynamics-Dust Interaction in West Africa (CADDIWA) campaign held in September 2021 in Cabo Verde. ER waves impact temperature and humidity above 2500 m, MRG-TD1 around 3500 m, and MRG-TD2 around 2000 m. Interactions between these waves favor tropical cyclone formation.