Preprints
https://doi.org/10.5194/egusphere-2024-952
https://doi.org/10.5194/egusphere-2024-952
19 Apr 2024
 | 19 Apr 2024

Assessing the global contribution of marine, terrestrial bioaerosols, and desert dust to ice-nucleating particle concentrations

Marios Chatziparaschos, Stelios Myriokefalitakis, Nikos Kalivitis, Nikos Daskalakis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Mihalis Vrekoussis, and Maria Kanakidou

Abstract. Aerosol-cloud interactions, and particularly ice crystals in mixed-phase clouds (MPC), stand as a key source of uncertainty in climate change assessments. State-of-the-art laboratory-based parameterizations were introduced into a global chemistry-transport model to investigate the contribution of mineral dust, marine primary organic aerosol (MPOA), and terrestrial primary biological aerosol particles (PBAP) to ice nucleating particles (INP) in MPC. INP originating from PBAP (INPPBAP) are found to be the primary source of INP at low altitudes between -10 °C and -20 °C, particularly in the tropics, with a pronounced peak in the Northern Hemisphere (NH) during boreal summer. INPPBAP contributes about 27 % (in the NH) and 30 % (in the SH) of the INP population. Dust-derived INP (INPD) show a prominent presence at high altitudes in all seasons, dominating at temperatures below -25 °C, constituting 68 % of the INP average column burden. MPOA-derived INP (INPMPOA) dominate in the Southern Hemisphere (SH), particularly at subpolar and polar latitudes at low altitudes for temperatures below -16 °C, representing approximately 46 % of INP population in the SH. When evaluated against available global observational INP data, the model achieves its highest predictability across all temperature ranges when both INPD and INPMPOA are included. The additional introduction of INPPBAP slightly reduces model skills for temperatures lower than -16 oC; however, INPPBAP are the main contributors to warm-temperature ice nucleation events. Therefore, consideration of dust and marine and terrestrial bioaerosol as IPN precursors is required to simulate ice nucleation in climate models. In this respect, emissions, ice-nucleating activity of each particle type and its evolution during atmospheric transport require further investigations.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

20 Aug 2025
Assessing the global contribution of marine aerosols, terrestrial bioaerosols, and desert dust to ice-nucleating particle concentrations
Marios Chatziparaschos, Stelios Myriokefalitakis, Nikos Kalivitis, Nikos Daskalakis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 25, 9085–9111, https://doi.org/10.5194/acp-25-9085-2025,https://doi.org/10.5194/acp-25-9085-2025, 2025
Short summary
Marios Chatziparaschos, Stelios Myriokefalitakis, Nikos Kalivitis, Nikos Daskalakis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Mihalis Vrekoussis, and Maria Kanakidou

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-952', Anonymous Referee #1, 06 Jun 2024
  • RC2: 'Review of "Assessing the global contribution of marine, terrestrial bioaerosols, and desert dust to ice-nucleating particle concentrations" by Chatziparaschos et al.', Anonymous Referee #2, 09 Jul 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-952', Anonymous Referee #1, 06 Jun 2024
  • RC2: 'Review of "Assessing the global contribution of marine, terrestrial bioaerosols, and desert dust to ice-nucleating particle concentrations" by Chatziparaschos et al.', Anonymous Referee #2, 09 Jul 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Maria Kanakidou on behalf of the Authors (06 Nov 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (18 Nov 2024) by Toshihiko Takemura
RR by Anonymous Referee #1 (28 Nov 2024)
RR by Anonymous Referee #2 (07 Dec 2024)
ED: Reconsider after major revisions (07 Dec 2024) by Toshihiko Takemura
AR by Maria Kanakidou on behalf of the Authors (09 Jan 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (15 Jan 2025) by Toshihiko Takemura
RR by Anonymous Referee #1 (17 Jan 2025)
RR by Anonymous Referee #2 (11 Feb 2025)
ED: Reconsider after major revisions (12 Feb 2025) by Toshihiko Takemura
AR by Maria Kanakidou on behalf of the Authors (26 Mar 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (31 Mar 2025) by Toshihiko Takemura
RR by Anonymous Referee #2 (22 Apr 2025)
ED: Publish subject to technical corrections (24 Apr 2025) by Toshihiko Takemura
AR by Maria Kanakidou on behalf of the Authors (02 May 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

20 Aug 2025
Assessing the global contribution of marine aerosols, terrestrial bioaerosols, and desert dust to ice-nucleating particle concentrations
Marios Chatziparaschos, Stelios Myriokefalitakis, Nikos Kalivitis, Nikos Daskalakis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 25, 9085–9111, https://doi.org/10.5194/acp-25-9085-2025,https://doi.org/10.5194/acp-25-9085-2025, 2025
Short summary
Marios Chatziparaschos, Stelios Myriokefalitakis, Nikos Kalivitis, Nikos Daskalakis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Mihalis Vrekoussis, and Maria Kanakidou
Marios Chatziparaschos, Stelios Myriokefalitakis, Nikos Kalivitis, Nikos Daskalakis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Mihalis Vrekoussis, and Maria Kanakidou

Viewed

Total article views: 1,373 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
845 237 291 1,373 71 41 59
  • HTML: 845
  • PDF: 237
  • XML: 291
  • Total: 1,373
  • Supplement: 71
  • BibTeX: 41
  • EndNote: 59
Views and downloads (calculated since 19 Apr 2024)
Cumulative views and downloads (calculated since 19 Apr 2024)

Viewed (geographical distribution)

Total article views: 1,374 (including HTML, PDF, and XML) Thereof 1,374 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Aug 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We show distinct seasonal and geographical patterns in the contributions of mineral dust, marine and terrestrial biological particles to ice-nucleating particles (INP) concentrations that lead to atmospheric ice formation, a major source of uncertainty in climate predictions. Bioaerosols are the major source of INP at high temperatures, while mineral dust influences the global INP population at lower temperatures. These particles can satisfactorily reproduce INP in a climate model.
Share