Preprints
https://doi.org/10.5194/egusphere-2024-926
https://doi.org/10.5194/egusphere-2024-926
16 Apr 2024
 | 16 Apr 2024

Bridging Gas and Aerosol Properties between Northeast U.S. and Bermuda: Analysis of Eight Transit Flights

Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian

Abstract. The western North Atlantic Ocean is strongly influenced by continental outflow, making it an ideal region to study the atmospheric transition from a polluted coastline to the marine environment. Utilizing eight transit flights between NASA Langley Research Center (LaRC) in Hampton, Virginia and the remote island of Bermuda from NASA’s Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE), we examine the evolution of trace gas and aerosol properties off the U.S. East Coast. The first pair of flights flew along the wind trajectory of continental outflow, while the other flights captured a mix of marine and continental air mass sources. For measurements within the boundary layer (BL), there was an offshore decline in particle N<100 nm, N>100 nm, CH4, CO, and CO2 concentrations, all leveling off around ~900 km offshore from LaRC. These trends are strongest for the first pair of flights. In the BL, offshore declines in organic mass fraction and increases in sulfate mass fraction coincide with increasing hygroscopicity based on f(RH) measurements. Free troposphere measurements show a decline in N<100 nm but other measured parameters are more variable when compared to the prominent offshore gradients seen in the BL. Pollution layers exist in the free troposphere, such as smoke plumes, that can potentially entrain into the BL. This work provides detailed case studies with a broad set of high-resolution measurements to further our understanding of the transition between continental and marine environments.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-926', Anonymous Referee #1, 26 May 2024
  • RC2: 'Comment on egusphere-2024-926', Anonymous Referee #2, 24 Jun 2024
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian

Viewed

Total article views: 329 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
234 76 19 329 28 13 14
  • HTML: 234
  • PDF: 76
  • XML: 19
  • Total: 329
  • Supplement: 28
  • BibTeX: 13
  • EndNote: 14
Views and downloads (calculated since 16 Apr 2024)
Cumulative views and downloads (calculated since 16 Apr 2024)

Viewed (geographical distribution)

Total article views: 324 (including HTML, PDF, and XML) Thereof 324 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 29 Jun 2024
Download
Short summary
Using aircraft measurements over the northwest Atlantic between the U.S. East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high resolution measurements of concentrations as well as particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.