Preprints
https://doi.org/10.5194/egusphere-2024-892
https://doi.org/10.5194/egusphere-2024-892
30 Apr 2024
 | 30 Apr 2024
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Analysis of ozone vertical profile day-to-day variability in the lower troposphere during the Paris-2022 ACROSS campaign

Gerard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec

Abstract. The ozone vertical profiles variability in the lower troposphere is analyzed during the summer 2022 ACROSS (Atmospheric ChemistRy Of the Suburban foreSt) measurement campaign as part of the PANAME (PAris region urbaN Atmospheric observations and models for Multidisciplinary rEsearch) project. The analysis is based on 21 days of DIfferential Absorption Lidar (DIAL) observations, in addition to the two daily vertical ozone profiles measured by In-service Aircraft for a Global Observing System (IAGOS) flights to and from Paris airport. The ACROSS ozone profiles are also a good opportunity to assess the lowermost tropospheric ozone column retrieval by the satellite observations of Infrared Atmospheric Sounding Interferometer (IASI). The planetary boundary layer (PBL) vertical structure evolution is monitored using a 808-nm microlidar and meteorological radiosondes launched in the city center. Characterization of the regional transport of polluted air masses advected over the city is based on the daily ozone analysis of the Copernicus Atmospheric Service (CAMS) ensemble model and on backward trajectories of the Paris city plume. This work show that the CAMS simulations of the Paris ozone plume between the surface and 3 km are consistent with the ACROSS ozone vertical profiles and that the IASI satellite observations can capture the day to day variability of the 0–3 km lowermost ozone column if the contribution of the surface column below 1.2 km is lower than 4 DU. The day time ozone vertical structure above the city center is also in good agreement with the PBL growth during the day and with the formation of the residual layer during the night. The O3 DIAL may provide additional information about the PBL vertical structure to discuss differences between microlidar and radiosounding measurements of the PBL height.

In addition to the well-known control of the ozone photochemical production by atmospheric temperature, cloud cover and mixing between the surface layer (0–500 m) and the residual layer, the comparison of four ozone pollution events shows that the thickness of the PBL during the day and the advection of regional scale plumes above the PBL can significantly change the ozone concentrations above Paris city center. With similar cloud cover and air temperature, high ozone concentrations up to 180 µg.m-3 are encountered during the day when PBL height is below 1.5 km, while they remain below 150 µg.m-3 when PBL height increases above 2.5 km. Advection of ozone poor concentrations in the free troposphere during a Saharan dust event is able to mitigate the ozone photochemical production. On the other hand, the advection of a continental pollution plume with high ozone concentrations > 140 µg.m-3 maintained high concentrations in the surface layer despite a temperature decrease and cloud cover development.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Gerard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec

Status: open (until 11 Jun 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Gerard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Gerard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec

Viewed

Total article views: 168 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
126 35 7 168 23 5 6
  • HTML: 126
  • PDF: 35
  • XML: 7
  • Total: 168
  • Supplement: 23
  • BibTeX: 5
  • EndNote: 6
Views and downloads (calculated since 30 Apr 2024)
Cumulative views and downloads (calculated since 30 Apr 2024)

Viewed (geographical distribution)

Total article views: 168 (including HTML, PDF, and XML) Thereof 168 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 May 2024
Download
Short summary
Characterization of ozone pollution in urban areas has benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 days of lidar and aircraft observations. The main objective is a sensitivity analysis of ozone pollution to first the micrometeorological processes in the urban atmospheric boundary layer, and second, the transport of regional pollution. The paper also discuss to what extent satellite observations can track the observed ozone plumes.