Preprints
https://doi.org/10.5194/egusphere-2024-752
https://doi.org/10.5194/egusphere-2024-752
29 Apr 2024
 | 29 Apr 2024

Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency

Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe

Abstract. Various aerosols, including mineral dust, soot, and biological particles, can act as ice nuclei, initiating the freezing of supercooled cloud droplets. Cloud droplet freezing significantly impacts cloud properties and, consequently, weather and climate. Some biological ice nuclei exhibit exceptionally high nucleation temperatures close to 0 °C. Ice Nucleating Macromolecules (INMs) found on pollen are typically not considered among the most active ice nuclei. Still, they can be highly abundant, especially for species such as Betula pendula, a widespread birch tree species in the boreal forest. Recent studies have shown that certain tree-derived INMs exhibit ice nucleation activity above -10 °C, suggesting they could play a more significant role in atmospheric processes than previously understood. Our study reveals three distinct INM classes active at -8.7 °C, -15.7 °C, and -17.4 °C are present in B. pendula. Freeze-drying and freeze-thaw cycles noticeably alter their ice nucleation capability, and the results of heat treatment, size, and chemical analysis indicate that INM classes correspond to size-varying aggregates, with larger aggregates nucleating ice at higher temperatures in agreement with previous studies on fungal and bacterial ice nucleators. Our findings suggest that B. pendula INMs are potentially important for atmospheric ice nucleation because of their high prevalence and nucleation temperatures.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

09 Jan 2025
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025,https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-752', Gabor Vali, 18 Jul 2024
    • AC1: 'Reply on RC2', Florian Reyzek, 28 Aug 2024
  • RC2: 'Comment on egusphere-2024-752', Anonymous Referee #2, 29 Jul 2024
    • AC1: 'Reply on RC2', Florian Reyzek, 28 Aug 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-752', Gabor Vali, 18 Jul 2024
    • AC1: 'Reply on RC2', Florian Reyzek, 28 Aug 2024
  • RC2: 'Comment on egusphere-2024-752', Anonymous Referee #2, 29 Jul 2024
    • AC1: 'Reply on RC2', Florian Reyzek, 28 Aug 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (13 Sep 2024) by Robert Rhew
AR by Florian Wieland on behalf of the Authors (16 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (23 Sep 2024) by Robert Rhew
RR by Gabor Vali (29 Sep 2024)
ED: Publish as is (09 Oct 2024) by Robert Rhew
AR by Florian Wieland on behalf of the Authors (04 Nov 2024)  Manuscript 

Journal article(s) based on this preprint

09 Jan 2025
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025,https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe

Viewed

Total article views: 648 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
455 156 37 648 44 28 30
  • HTML: 455
  • PDF: 156
  • XML: 37
  • Total: 648
  • Supplement: 44
  • BibTeX: 28
  • EndNote: 30
Views and downloads (calculated since 29 Apr 2024)
Cumulative views and downloads (calculated since 29 Apr 2024)

Viewed (geographical distribution)

Total article views: 658 (including HTML, PDF, and XML) Thereof 658 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 09 Jan 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets, and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecules (INMs) and aggregates of varying size that can nucleate ice at temperatures of up to -5.4 °C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate stronger than previously thought.