Preprints
https://doi.org/10.5194/egusphere-2024-542
https://doi.org/10.5194/egusphere-2024-542
19 Mar 2024
 | 19 Mar 2024

Shipborne Comparison of Infrared and Passive Microwave Radiometers for Sea Surface Temperature Observations

Guisella Gacitúa, Jacob L. Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon

Abstract. In the spring of 2021, a shipborne comparison of sea surface temperature (SST) measurements was undertaken using Thermal Infrared (TIR) and Passive Microwave (PMW) radiometers. The Danish Meteorological Institute (DMI) and the Technical University of Denmark (DTU) jointly deployed two TIR and two PMW instruments aboard the Norröna ferry, which traversed between Denmark and Iceland for a week. The primary objective was to assess the proximity-based comparison of TIR and PMW measurements, minimizing atmospheric influences and providing valuable insights into skin (TIR) and sub-skin (PMW) SSTs. A linear regression algorithm was developed using TIR SST data as a reference to derive PMW SST from brightness temperature. The data analysis primarily focused on evaluating data variability, identifying discrepancies between TIR and PMW SST, and assessing the overall uncertainty in the retrieval process. The overall root mean squared error (RMSE) of the retrieved PMW SST was 0.88 K during the ship’s motion and 0.94 K under stable conditions when the ship was moored. The analysis of the retrieved SST error budget involved the consideration of observed quantities and a forward model, accounting for factors like instrument noise, wind speed, incident angles, and the RMSE of skin and sub-skin temperature. The resulting error budget indicated 0.97 K for the data acquired during motion and 0.34 K for data collected during port stay.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

16 Dec 2024
Shipborne comparison of infrared and passive microwave radiometers for sea surface temperature observations
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024,https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Guisella Gacitúa, Jacob L. Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-542', Anonymous Referee #1, 25 Apr 2024
  • RC2: 'Comment on egusphere-2024-542', Anonymous Referee #2, 19 Aug 2024
  • AC1: 'Response to Reviewers', Guisella Gacitúa, 30 Sep 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-542', Anonymous Referee #1, 25 Apr 2024
  • RC2: 'Comment on egusphere-2024-542', Anonymous Referee #2, 19 Aug 2024
  • AC1: 'Response to Reviewers', Guisella Gacitúa, 30 Sep 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Guisella Gacitúa on behalf of the Authors (30 Sep 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (15 Oct 2024) by Lev Eppelbaum
AR by Guisella Gacitúa on behalf of the Authors (22 Oct 2024)

Journal article(s) based on this preprint

16 Dec 2024
Shipborne comparison of infrared and passive microwave radiometers for sea surface temperature observations
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024,https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Guisella Gacitúa, Jacob L. Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Guisella Gacitúa, Jacob L. Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon

Viewed

Total article views: 439 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
250 90 99 439 12 30
  • HTML: 250
  • PDF: 90
  • XML: 99
  • Total: 439
  • BibTeX: 12
  • EndNote: 30
Views and downloads (calculated since 19 Mar 2024)
Cumulative views and downloads (calculated since 19 Mar 2024)

Viewed (geographical distribution)

Total article views: 429 (including HTML, PDF, and XML) Thereof 429 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 16 Dec 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This study presents a shipborne intercomparison of sea surface temperature (SST) using thermal Infrared (TIR) and passive microwave (PMW) radiometers along the Denmark-Iceland route. Subskin SST was retrieved from PMW brightness temperatures. The investigation focuses on analyzing PMW data variability, quantifying uncertainty propagation, and comparing skin and subskin SSTs. The findings offer insights to optimize SST intercomparisons, enhancing the synergy between TIR and PMW observations.