Preprints
https://doi.org/10.5194/egusphere-2024-470
https://doi.org/10.5194/egusphere-2024-470
21 Feb 2024
 | 21 Feb 2024

Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)

Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob

Abstract. Tropospheric ozone is a major air pollutant and greenhouse gas. It is also the primary precursor of OH, the main tropospheric oxidant. Global atmospheric chemistry models show large differences in their simulations of tropospheric ozone budgets. Here we implement the widely used GEOS-Chem atmospheric chemistry module as an alternative to CAM-chem within the Community Earth System Model version 2 (CESM2). We compare the resulting simulations of tropospheric ozone and related species to observations from ozonesondes, the ATom-1 aircraft campaign over the Pacific and Atlantic, and the KORUS-AQ aircraft campaign over the Seoul Metropolitan Area. We find that GEOS-Chem and CAM-chem within CESM2 have similar tropospheric ozone budgets and concentrations usually within 5 ppb but important differences in the underlying processes including (1) photolysis scheme (no aerosol effects in CAM-chem), (2) aerosol nitrate photolysis, (3) N2O5 cloud uptake, (4) tropospheric halogen chemistry, and (5) ozone deposition to the oceans. Global tropospheric OH concentrations are the same in both models but there are large regional differences reflecting the above processes. Carbon monoxide is lower in CAM-chem (and lower than observations) because of higher OH concentrations in the northern hemisphere and insufficient production from isoprene oxidation in the southern hemisphere. CESM2 does not scavenge water-soluble gases in convective updrafts leading to some upper tropospheric biases. Comparison to KORUS-AQ observations shows successful simulation of oxidants under polluted conditions in both models but suggests insufficient boundary layer mixing in CESM2. The implementation and evaluation of GEOS-Chem in CESM2 contributes to the MUSICA vision of modularizing tropospheric chemistry in Earth system models.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

02 Aug 2024
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024,https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-470', Anonymous Referee #1, 08 Apr 2024
  • RC2: 'Comment on egusphere-2024-470', Anonymous Referee #2, 23 Apr 2024
  • RC3: 'Comment on egusphere-2024-470', Anonymous Referee #3, 06 May 2024
  • AC1: 'Comment on egusphere-2024-470', Haipeng Lin, 21 Jun 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-470', Anonymous Referee #1, 08 Apr 2024
  • RC2: 'Comment on egusphere-2024-470', Anonymous Referee #2, 23 Apr 2024
  • RC3: 'Comment on egusphere-2024-470', Anonymous Referee #3, 06 May 2024
  • AC1: 'Comment on egusphere-2024-470', Haipeng Lin, 21 Jun 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Haipeng Lin on behalf of the Authors (21 Jun 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (25 Jun 2024) by Suvarna Fadnavis
AR by Haipeng Lin on behalf of the Authors (25 Jun 2024)

Journal article(s) based on this preprint

02 Aug 2024
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024,https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob

Viewed

Total article views: 992 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
566 382 44 992 13 16
  • HTML: 566
  • PDF: 382
  • XML: 44
  • Total: 992
  • BibTeX: 13
  • EndNote: 16
Views and downloads (calculated since 21 Feb 2024)
Cumulative views and downloads (calculated since 21 Feb 2024)

Viewed (geographical distribution)

Total article views: 1,002 (including HTML, PDF, and XML) Thereof 1,002 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Tropospheric ozone is a major air pollutant, greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side-by-side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.