the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Abstract. Cloud liquid water path (L) adjusts to perturbations in cloud droplet number concentration (N) over time. We explore the magnitude and timescale of this adjustment in nocturnal non-precipitating marine stratocumuli using large eddy simulations of baseline conditions and aerosol seeding experiments for 22 meteorological conditions. The results confirm that the L adjustment (δL) slope (k) is more negative for simulation pairs with relatively low N and less negative for high N. Overall, k is unlikely to be lower than −0.4 within 24 h since seeding starts, meaning the L adjustment is unlikely to fully offset the brightening due to the Twomey effect. After seeding, the δL becomes increasingly negative which can be characterized by an exponential convergence. This evolution is governed by a short timescale around 5 h and lasts for around 8–12 h. It is driven by the feedback between entrainment, L, and boundary layer (BL) turbulence. Other processes, including radiation, surface fluxes, and subsidence, respond to the seeding weakly. This short timescale is insensitive to the amount of seeding, making the evolution of δL and some other deviations similar for different seeding amounts after appropriate scaling. The timescale of k evolution is closely related to the δL timescale and hence also short, while it could also be affected by the δN evolution. The results are most relevant to conditions where seeding is applied to a large area of marine stratocumulus in well-mixed and overcast BL where shear is not a primary source of turbulence.
- Preprint
(3179 KB) - Metadata XML
-
Supplement
(996 KB) - BibTeX
- EndNote
Status: open (until 28 Feb 2025)
-
RC1: 'Comment on egusphere-2024-3891', Anonymous Referee #1, 12 Jan 2025
reply
I find this to be an outstanding manuscript regarding the timescales of LWP adjustments in non-precipitating marine stratocumulus clouds. I really have no substantial suggestions for improvement.
1. Perhaps all prime quantities could be written as dot quantities (symbol with a dot overhead) instead? This is the more typical shorthand notation for time tendencies in the physics community I believe.
2. A reference for the -0.4 value would be appreciated.
3. Line 260 - typo: So --> To
Citation: https://doi.org/10.5194/egusphere-2024-3891-RC1
Viewed
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
114 | 30 | 6 | 150 | 16 | 1 | 3 |
- HTML: 114
- PDF: 30
- XML: 6
- Total: 150
- Supplement: 16
- BibTeX: 1
- EndNote: 3
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1