Preprints
https://doi.org/10.5194/egusphere-2024-3722
https://doi.org/10.5194/egusphere-2024-3722
09 Dec 2024
 | 09 Dec 2024

Constraining elemental mercury air–sea exchange using long-term ground-based observations

Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand

Abstract. Air-sea exchange of gaseous elemental mercury (Hg0) is a major component of the global mercury (Hg) biogeochemical cycle but remains poorly understood due to sparse in situ measurements. Here, we used long-term atmospheric Hg0 (Hg0air) observations combined with air mass back trajectories at four ground-based monitoring sites to study Hg0 air-sea exchange. The trajectories showed that all four sites sample mainly marine air masses. At all sites, we observed a gradual increase in mean Hg0air concentration with air mass recent residence time in the Marine Boundary Layer (MBL), followed by a steady state. The pattern is consistent with the thin film gas exchange model, which predicts net Hg0 emissions from the surface ocean until the Hg0air concentration normalised by Henry’s law constant matches the surface ocean dissolved Hg0 (Hg0aq) concentration. This provides strong evidence that ocean Hg0 emissions directly influence Hg0air concentrations at these sites. Using the observed relationship between Hg0air concentrations and air mass recent MBL residence time, we estimated mean surface ocean Hg0aq concentrations of 4–7 pg L-1 for the North Atlantic and Arctic oceans (AA) and 4 pg L-1 for the Southern, South Atlantic and south Indian oceans (SSI). Estimated ocean Hg0 emission fluxes ranged between 0.58–0.75 and 0.47–0.66 ng m-2 h-1 for the AA and SSI, respectively, with a global extrapolated mean flux of 1900 t y-1 (1200–2600 t y-1). This study demonstrates the applicability of long-term, ground-based Hg0air observations in constraining Hg0 air-sea exchange.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

01 Sep 2025
Constraining elemental mercury air–sea exchange using long-term ground-based observations
Koketso M. Molepo, Johannes Bieser, Alkuin M. Koenig, Ian M. Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
Atmos. Chem. Phys., 25, 9645–9668, https://doi.org/10.5194/acp-25-9645-2025,https://doi.org/10.5194/acp-25-9645-2025, 2025
Short summary
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-3722', Anonymous Referee #1, 23 Dec 2024
    • AC2: 'Reply on RC1', Koketso Molepo, 04 Apr 2025
  • RC2: 'Comment on egusphere-2024-3722', Anonymous Referee #2, 29 Dec 2024
    • AC1: 'Reply on RC2', Koketso Molepo, 04 Apr 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-3722', Anonymous Referee #1, 23 Dec 2024
    • AC2: 'Reply on RC1', Koketso Molepo, 04 Apr 2025
  • RC2: 'Comment on egusphere-2024-3722', Anonymous Referee #2, 29 Dec 2024
    • AC1: 'Reply on RC2', Koketso Molepo, 04 Apr 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Koketso Molepo on behalf of the Authors (04 Apr 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (09 Apr 2025) by Leiming Zhang
RR by Anonymous Referee #1 (25 Apr 2025)
ED: Publish as is (20 May 2025) by Leiming Zhang
AR by Koketso Molepo on behalf of the Authors (24 May 2025)

Journal article(s) based on this preprint

01 Sep 2025
Constraining elemental mercury air–sea exchange using long-term ground-based observations
Koketso M. Molepo, Johannes Bieser, Alkuin M. Koenig, Ian M. Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
Atmos. Chem. Phys., 25, 9645–9668, https://doi.org/10.5194/acp-25-9645-2025,https://doi.org/10.5194/acp-25-9645-2025, 2025
Short summary
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand

Viewed

Total article views: 598 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
458 120 20 598 49 21 47
  • HTML: 458
  • PDF: 120
  • XML: 20
  • Total: 598
  • Supplement: 49
  • BibTeX: 21
  • EndNote: 47
Views and downloads (calculated since 09 Dec 2024)
Cumulative views and downloads (calculated since 09 Dec 2024)

Viewed (geographical distribution)

Total article views: 572 (including HTML, PDF, and XML) Thereof 572 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 01 Sep 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Mercury exchange between the ocean and atmosphere is poorly understood due to limited in situ data. Here, using atmospheric mercury observations from ground-based monitoring stations along with air mass trajectories, we found that atmospheric Hg levels increase with air mass ocean exposure time, matching predictions for ocean mercury emissions. This finding indicates that ocean emissions directly influence atmospheric mercury levels and enables us to estimate these emissions on a global scale.
Share