Preprints
https://doi.org/10.5194/egusphere-2024-3722
https://doi.org/10.5194/egusphere-2024-3722
09 Dec 2024
 | 09 Dec 2024
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Constraining elemental mercury air–sea exchange using long-term ground-based observations

Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand

Abstract. Air-sea exchange of gaseous elemental mercury (Hg0) is a major component of the global mercury (Hg) biogeochemical cycle but remains poorly understood due to sparse in situ measurements. Here, we used long-term atmospheric Hg0 (Hg0air) observations combined with air mass back trajectories at four ground-based monitoring sites to study Hg0 air-sea exchange. The trajectories showed that all four sites sample mainly marine air masses. At all sites, we observed a gradual increase in mean Hg0air concentration with air mass recent residence time in the Marine Boundary Layer (MBL), followed by a steady state. The pattern is consistent with the thin film gas exchange model, which predicts net Hg0 emissions from the surface ocean until the Hg0air concentration normalised by Henry’s law constant matches the surface ocean dissolved Hg0 (Hg0aq) concentration. This provides strong evidence that ocean Hg0 emissions directly influence Hg0air concentrations at these sites. Using the observed relationship between Hg0air concentrations and air mass recent MBL residence time, we estimated mean surface ocean Hg0aq concentrations of 4–7 pg L-1 for the North Atlantic and Arctic oceans (AA) and 4 pg L-1 for the Southern, South Atlantic and south Indian oceans (SSI). Estimated ocean Hg0 emission fluxes ranged between 0.58–0.75 and 0.47–0.66 ng m-2 h-1 for the AA and SSI, respectively, with a global extrapolated mean flux of 1900 t y-1 (1200–2600 t y-1). This study demonstrates the applicability of long-term, ground-based Hg0air observations in constraining Hg0 air-sea exchange.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand

Status: open (until 20 Jan 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-3722', Anonymous Referee #1, 23 Dec 2024 reply
  • RC2: 'Comment on egusphere-2024-3722', Anonymous Referee #2, 29 Dec 2024 reply
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand
Koketso Michelle Molepo, Johannes Bieser, Alkuin Maximilian Koenig, Ian Michael Hedgecock, Ralf Ebinghaus, Aurélien Dommergue, Olivier Magand, Hélène Angot, Oleg Travnikov, Lynwill Martin, Casper Labuschagne, Katie Read, and Yann Bertrand

Viewed

Total article views: 230 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
173 49 8 230 22 3 3
  • HTML: 173
  • PDF: 49
  • XML: 8
  • Total: 230
  • Supplement: 22
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 09 Dec 2024)
Cumulative views and downloads (calculated since 09 Dec 2024)

Viewed (geographical distribution)

Total article views: 219 (including HTML, PDF, and XML) Thereof 219 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 17 Jan 2025
Download
Short summary
Mercury exchange between the ocean and atmosphere is poorly understood due to limited in situ data. Here, using atmospheric mercury observations from ground-based monitoring stations along with air mass trajectories, we found that atmospheric Hg levels increase with air mass ocean exposure time, matching predictions for ocean mercury emissions. This finding indicates that ocean emissions directly influence atmospheric mercury levels and enables us to estimate these emissions on a global scale.