Preprints
https://doi.org/10.5194/egusphere-2024-3602
https://doi.org/10.5194/egusphere-2024-3602
16 Dec 2024
 | 16 Dec 2024
Status: this preprint is open for discussion.

Rubber plant root properties induce contrasting soil aggregate stability through cohesive force and reduced land degradation risk in southern China

Waqar Ali, Amani Milinga, Tao Luo, Mohammad Nauman Khan, Asad Shah, Khurram Shehzad, Qiu Yang, Huai Yang, Wenxing Long, and Wenjie Liu

Abstract. In southern China, Hainan Island faces land degradation risks due to poor soil physical properties, such as a high proportion of microaggregates (< 0.25 mm), low soil organic matter (SOM) content, and frequent uneven rainfall. The cohesive force between soil particles, which is influenced by plant root properties and root-derived SOM, is essential for improving soil aggregate stability and mitigating land degradation. However, the mechanisms by which rubber root properties and root-derived SOM affect soil aggregate stability through cohesive forces in tropical regions remain unclear. This study compared rubber plants of varying ages to assess the effects of root properties and root-derived SOM on soil aggregate stability and cohesive forces. Older rubber plants (> 11-years-old) showed greater root diameters (RD) (0.81–0.91 mm), higher root length (RL) densities (1.83–2.70 cm/cm3), and increased proportions of fine (0.2–0.5 mm) and medium (0.5–1 mm) roots, leading to higher SOM due to lower lignin and higher cellulose contents. Older plants exhibited higher soil cohesion, with significant correlations among root characteristics, SOM, and cohesive force, whereas the random forest (RF) model identified aggregates (> 0.25 mm), root properties, SOM, and cohesive force as the key factors influencing mean weight diameter (MWD) and geometric mean diameter (GMD). Furthermore, partial least squares-path models (PLS-PM) showed that the RL density (RLD) directly influenced SOM (path coefficient 0.70) and root-free cohesive force (RFCF) (path coefficient 0.30), which in turn affected the MWD, with additional direct RLD effects on the SOM (path coefficient 0.45) and MWD (path coefficient 0.64) in the surface soil. Cohesive force in rubber plants of different ages increased macroaggregates (> 0.25 mm) and decreased microaggregates (< 0.25 mm), with topsoil average MWD following the order: CK (0.98 mm) < 5Y_RF (1.26 mm) < MF (1.31 mm) < 11Y_RF (1.36 mm) < 27Y_RF (1.48 mm) < 20Y_RF (1.51 mm). Rubber plant root properties enhance soil aggregate stability and reduce the land degradation risk in tropical regions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Waqar Ali, Amani Milinga, Tao Luo, Mohammad Nauman Khan, Asad Shah, Khurram Shehzad, Qiu Yang, Huai Yang, Wenxing Long, and Wenjie Liu

Status: open (until 27 Jan 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Waqar Ali, Amani Milinga, Tao Luo, Mohammad Nauman Khan, Asad Shah, Khurram Shehzad, Qiu Yang, Huai Yang, Wenxing Long, and Wenjie Liu
Waqar Ali, Amani Milinga, Tao Luo, Mohammad Nauman Khan, Asad Shah, Khurram Shehzad, Qiu Yang, Huai Yang, Wenxing Long, and Wenjie Liu
Metrics will be available soon.
Latest update: 16 Dec 2024
Download
Short summary
This study explores how rubber plant root traits and SOM improve soil stability via cohesive forces. Older plantations (>11 years) showed higher root density, SOM, and optimal cellulose-to-lignin ratios, enhancing soil cohesion and aggregate stability. These findings highlight the role of mature rubber plants in reducing soil degradation and offer insights for sustainable land management and agricultural productivity in tropical regions like Hainan Island.