Preprints
https://doi.org/10.5194/egusphere-2024-3458
https://doi.org/10.5194/egusphere-2024-3458
02 Dec 2024
 | 02 Dec 2024
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Polar winter climate change: strong local effects from sea ice loss, widespread consequences from warming seas

Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman

Abstract. Decreasing sea ice cover and warming sea surface temperatures (SSTs) impact polar climate in uncertain ways. We aim to reduce the uncertainty by comparing output from four 41-year simulations with four Atmospheric General Circulation Models (AGCMs). In our baseline simulations, the models use identical prescribed SSTs and sea ice cover conditions representative of 1950–1969. In three sensitivity experiments, the SSTs and sea ice cover are individually and simultaneously changed to conditions representative of 2080–2099 in a strong warming scenario. Overall, the models agree that warmer SSTs have a widespread impact on 2 m temperature and precipitation while decreasing sea ice cover mainly causes a local response (i.e. largest effect where the sea ice perturbation occurs). Thus, decreasing sea ice cover causes a larger change in precipitation and temperature than warmer SSTs in areas where sea ice cover is reduced while warmer SSTs dominate the response elsewhere. In general, the response in temperature and precipitation to simultaneous changes in SSTs and sea ice cover is approximately equal to the sum due to individual changes, except in areas of sea ice decrease where the joint effect is smaller than the sum of the individual effects. The models agree less well on the magnitude and spatial distribution of the response in mean sea level pressure, i.e. uncertainties associated with atmospheric circulation responses are larger than uncertainties associated with thermodynamic responses. Furthermore, the circulation response to decreasing sea ice cover is sometimes significantly enhanced but sometimes counteracted by the response to warmer SSTs.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman

Status: open (until 13 Jan 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman
Tuomas Naakka, Daniel Köhler, Kalle Nordling, Petri Räisänen, Marianne Tronstad Lund, Risto Makkonen, Joonas Merikanto, Bjørn H. Samset, Victoria A. Sinclair, Jennie L. Thomas, and Annica L. M. Ekman
Metrics will be available soon.
Latest update: 02 Dec 2024
Download
Short summary
The effects on polar climates of warmer sea surface temperatures and decreasing sea ice cover have been studied using four climate models with identical prescribed changes in sea surface temperatures and sea ice cover. The models predict similar changes in air temperature and precipitation in the polar regions in a warmer climate with less sea ice. However, the models disagree on how the atmospheric circulation, i.e. the large-scale winds, will change with warmer temperatures and less sea ice.