Preprints
https://doi.org/10.5194/egusphere-2024-3341
https://doi.org/10.5194/egusphere-2024-3341
22 Nov 2024
 | 22 Nov 2024
Status: this preprint is open for discussion and under review for Climate of the Past (CP).

Complex interplay of forcings drives Indian vegetation and summer monsoon variability during MIS 11

Dulce Oliveira, Stéphanie Desprat, Qiuzhen Yin, Coralie Zorzi, Zhipeng Wu, Krishnamurthy Anupama, Srinivasan Prasad, Montserrat Alonso-García, and Philippe Martinez

Abstract. Marine Isotope Stage (MIS) 11 has long been considered a unique Quaternary interglacial due to its orbital similarities with the Holocene, persistence of high atmospheric CO₂ concentrations and extended duration triggering unusual polar ice-sheet loss. Despite its importance, Indian summer monsoon (ISM) variability within the core monsoon zone (CMZ), as well as its impacts on vulnerable tropical forests, remain unexplored. Here, we document, for the first time, MIS 11 ISM-driven vegetation changes and their underlying forcings by combining pollen analysis from IODP Site U1446, strategically retrieved from the Bay of Bengal to represent the CMZ, with model simulations. Our results reveal the distinct roles of insolation, CO₂, ice volume, and millennial-scale variability in driving coupled ISM-vegetation changes, depending on the changing boundary conditions through MIS 11. Orbital- and millennial-scale tropical forest changes mirror southern European vegetation and atmospheric methane variability, ultimately reflecting shifts in the Intertropical Convergence Zone (ITCZ) that impact the tropical regions, a primary source of CH₄ emissions.

Our proxy and model reconstructions show that ISM-vegetation changes during MIS 11c closely followed boreal summer insolation, revealing its dominant role under warm background conditions with high CO₂ and reduced ice volume. Conversely, during MIS 11b-a, ISM-vegetation decreased while insolation remained high, indicating that its influence was overshadowed by expanding ice sheets, lower CO₂, and the interaction of orbital and millennial-scale variations. Millennial-scale climate variability during the younger MIS 11b-a substages is expressed by prominent forest contractions tied to southward ITCZ shifts, Atlantic meridional overturning circulation (AMOC) reductions and high-latitude ice sheet dynamics, which were rapidly followed by abrupt forest expansions associated with northward ITCZ shifts, AMOC strengthening and CH₄ overshoots. Conspicuously, the first and most severe forest setback interrupted MIS 11 full interglacial conditions, suggesting that extreme ISM weakening could also occur under similarly warm future conditions. Our findings provide new insights into ISM behavior during MIS 11, highlighting its high sensitivity to climate changes in the context of projected ISM intensification and its effect on the extent and composition of the tropical forest, which is key component of both global carbon and methane cycles.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Dulce Oliveira, Stéphanie Desprat, Qiuzhen Yin, Coralie Zorzi, Zhipeng Wu, Krishnamurthy Anupama, Srinivasan Prasad, Montserrat Alonso-García, and Philippe Martinez

Status: open (until 17 Jan 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Dulce Oliveira, Stéphanie Desprat, Qiuzhen Yin, Coralie Zorzi, Zhipeng Wu, Krishnamurthy Anupama, Srinivasan Prasad, Montserrat Alonso-García, and Philippe Martinez
Dulce Oliveira, Stéphanie Desprat, Qiuzhen Yin, Coralie Zorzi, Zhipeng Wu, Krishnamurthy Anupama, Srinivasan Prasad, Montserrat Alonso-García, and Philippe Martinez

Viewed

Total article views: 142 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
114 23 5 142 15 1 0
  • HTML: 114
  • PDF: 23
  • XML: 5
  • Total: 142
  • Supplement: 15
  • BibTeX: 1
  • EndNote: 0
Views and downloads (calculated since 22 Nov 2024)
Cumulative views and downloads (calculated since 22 Nov 2024)

Viewed (geographical distribution)

Total article views: 135 (including HTML, PDF, and XML) Thereof 135 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 13 Dec 2024
Download
Short summary
We present an unprecedented record of Indian summer monsoon (ISM)-induced vegetation changes for MIS 11, a key interglacial. Site U1446 pollen data and models show that ISM-vegetation shifts stem from an interplay of dominant forcings based on boundary conditions. Insolation is the main driver during MIS 11c interglacial conditions, akin to future scenarios, while ice volume and CO₂ prevail in the glacial inception. Superimposed changes are marked by prominent forest contractions and expansions.