Preprints
https://doi.org/10.5194/egusphere-2024-3311
https://doi.org/10.5194/egusphere-2024-3311
05 Nov 2024
 | 05 Nov 2024

Overlapping turbulent boundary layers in an energetic coastal sea

Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda

Abstract. Turbulent mixing properties were directly observed to understand the interactions and overlapping events of wind- and tidally-forced boundary layers in a deep, weakly-stratified coastal sea. Te-Moana-o-Raukawa/Cook Strait of Aotearoa New Zealand is an 𝒪(200 m)-deep, energetic strait, known to experience both strong tidal currents and high wind speeds. More than 𝒪(40,000) quality-controlled turbulence observations were obtained from an ocean glider equipped with a microstructure profiler and a current speed through water sensor. Tidal flows of 𝒪(1 m s-1) and wind speeds of 𝒪(10 m s-1) independently enhanced turbulent dissipation to ε = 𝒪(10-5 W kg-1) in bottom and surface mixed layers. Over a four-day period, boundary-generated turbulence was evident in the interior water column on ten occasions, enhancing interior diapycnal diffusivity levels by 5-35-fold, reaching Kz = 𝒪(0.1–1 m2 s-1). On three instances, the top and bottom mixed layers overlapped. These overlapping boundary layers were present in water depths five-times deeper than previously observed, which has implications for the vertical extent of material fluxes from the surface or seafloor. Interior stratification was transient, emerging from far-field advection of low density surface waters and supported by vertical buoyancy fluxes, episodically fully eroded by boundary-generated turbulence. Combining observations with one-dimensional General Ocean Turbulence Model (GOTM) outputs, turbulence interactions in the interior were found to be modulated by wind, tides and transient stratification fields, in turn influencing the vertical structure of sinks and sources of turbulent kinetic energy. Enhanced vertical transport toward the interior of the near-boundary shear-produced turbulence was found to erode interior stratification.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

03 Jun 2025
Overlapping turbulent boundary layers in an energetic coastal sea
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
Ocean Sci., 21, 965–987, https://doi.org/10.5194/os-21-965-2025,https://doi.org/10.5194/os-21-965-2025, 2025
Short summary
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-3311', Anonymous Referee #1, 11 Jan 2025
    • AC1: 'Reply on RC1', Arnaud Valcarcel, 23 Feb 2025
  • RC2: 'Comment on egusphere-2024-3311', Anonymous Referee #2, 26 Jan 2025
    • AC2: 'Reply on RC2', Arnaud Valcarcel, 23 Feb 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-3311', Anonymous Referee #1, 11 Jan 2025
    • AC1: 'Reply on RC1', Arnaud Valcarcel, 23 Feb 2025
  • RC2: 'Comment on egusphere-2024-3311', Anonymous Referee #2, 26 Jan 2025
    • AC2: 'Reply on RC2', Arnaud Valcarcel, 23 Feb 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Arnaud Valcarcel on behalf of the Authors (23 Feb 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (24 Feb 2025) by Anne Marie Treguier
RR by Anonymous Referee #2 (04 Mar 2025)
RR by Anonymous Referee #1 (08 Mar 2025)
ED: Publish as is (08 Mar 2025) by Anne Marie Treguier
AR by Arnaud Valcarcel on behalf of the Authors (15 Mar 2025)

Journal article(s) based on this preprint

03 Jun 2025
Overlapping turbulent boundary layers in an energetic coastal sea
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
Ocean Sci., 21, 965–987, https://doi.org/10.5194/os-21-965-2025,https://doi.org/10.5194/os-21-965-2025, 2025
Short summary
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda

Viewed

Total article views: 490 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
254 104 132 490 19 17
  • HTML: 254
  • PDF: 104
  • XML: 132
  • Total: 490
  • BibTeX: 19
  • EndNote: 17
Views and downloads (calculated since 05 Nov 2024)
Cumulative views and downloads (calculated since 05 Nov 2024)

Viewed (geographical distribution)

Total article views: 491 (including HTML, PDF, and XML) Thereof 491 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 03 Jun 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This paper describes results from an underwater robot (glider) deployment in the energetic waters of Te-Moana-o-Raukawa. The glider data showed how energy is transferred from winds and tides to turbulent processes. We found that boundary layers of strong turbulence typically can impact the water from surface to seafloor, except when pockets of fresher or warmer water move into the region. Numerical simulations showed that turbulent energy transport was crucial for boundary layers to interact.
Share