the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Six years of greenhouse gas fluxes at Saclay, France, estimated with the Radon Tracer Method
Abstract. Here, we use carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrous oxide (N2O) and radon (222Rn) data from the Saclay ICOS tall tower in France to estimate CO2, CH4 and CO fluxes within the station footprint from January 2017 to December 2022 and N2O fluxes from February 2019 to December 2022 using the Radon Tracer Method (RTM).
We first performed a sensitivity study of this method applied to CH4 and combined with different radon exhalation maps including the improved European process-based radon flux maps developed within 19ENV01 traceRadon and back-trajectories in order to optimize it. Then, radon exhalation maps from the 19ENV01 traceRadon project, STILT trajectories from the ICOS Carbon Portal, best estimate of radon activity concentration and greenhouse gas data have been used to estimate the surface emissions. To our knowledge, this is the first study using the latest radon exhalation maps and standardized radon measurements to estimate CO2, CH4, CO and N2O surface emissions. We found that the average RTM estimates are 609 ± 402 mg m−2 h−1, 0.81 ± 0.66 mg m−2 h−1, 1.04±1.80 mg m−2 h−1 and 0.063 ± 0.079 mg m−2 h−1 for CO2, CH4, CO and N2O respectively. These fluxes are in good agreement with the literature.
CH4, N2O and CO are in fair agreement with the inventories, though with higher values. CO2 fluxes are about five times higher than modeled anthropogenic and biogenic fluxes combined. The differences mainly occur during summer, and the CO/CO2 ratio points toward a misrepresentation of the biogenic fluxes at this time by the WRF-VPRM version used here.
- Preprint
(4777 KB) - Metadata XML
- BibTeX
- EndNote
Status: open (extended)
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
160 | 53 | 9 | 222 | 6 | 7 |
- HTML: 160
- PDF: 53
- XML: 9
- Total: 222
- BibTeX: 6
- EndNote: 7
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1