Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-3090
https://doi.org/10.5194/egusphere-2024-3090
16 Oct 2024
 | 16 Oct 2024

Long-term impacts of global temperature stabilization and overshoot on exploited marine species

Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher

Abstract. Global warming alters ocean conditions, which can have dramatic consequences for marine species. Yet, the centennial-scale effects and reversibility of habitat viability for marine species, particularly those that are important to fisheries, remain uncertain. Using the Aerobic Growth Index, we quantify the impacts of warming and deoxygenation on the contemporary habitat volume of 46 exploited marine species in novel temperature stabilization and overshoot simulations until 2500. We demonstrate that only around half the simulated loss of contemporary (1995–2014) habitat volume is realized when warming levels are first reached. Moreover, in an overshoot scenario peaking at 2 °C global warming before stabilizing at 1.5 °C, the maximum decrease in contemporary habitat volume occurs more than 150 years post-peak warming. Species’ adaptation may strongly mitigate impacts depending on adaptation rate and pressure. According to our study, marine species will be affected for centuries after temperature stabilization and overshoot, with impacts surpassing those during the transient warming phase.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

28 Feb 2025
Long-term impacts of global temperature stabilization and overshoot on exploited marine species
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 22, 1115–1133, https://doi.org/10.5194/bg-22-1115-2025,https://doi.org/10.5194/bg-22-1115-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that...
Share