Preprints
https://doi.org/10.5194/egusphere-2024-3088
https://doi.org/10.5194/egusphere-2024-3088
30 Oct 2024
 | 30 Oct 2024
Status: this preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).

Closing the Gap: An Algorithmic Approach to Reconciling In-Situ and Remotely Sensed Aerosol Particle Properties

Sanja Dmitrovic, Joseph S. Schlosser, Ryan Bennett, Brian Cairns, Gao Chen, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Michael A. Jones, Jeffrey S. Reid, Taylor J. Shingler, Michael A. Shook, Armin Sorooshian, Kenneth L. Thornhill, Luke D. Ziemba, and Snorre Stamnes

Abstract. Remote sensors such as lidars and polarimeters are increasingly being used to understand atmospheric aerosol particles and their role in critical cloud and marine boundary layer processes. Therefore, it is essential to ensure these instruments' retrievals of aerosol optical and microphysical properties are consistent with measurements taken by in-situ instruments (i.e., external closure). However, achieving rigorous external closure is challenging because in-situ instruments often 1) provide dry (relative humidity (RH) < 40 %) aerosol measurements while remote sensors typically provide retrievals in ambient conditions and 2) only sample a limited aerosol particle size range due to aircraft sampling inlet cutoffs. To address these challenges, we introduce the e In Situ Aerosol Retrieval Algorithm (ISARA) in the form of a Python toolkit that converts dry in-situ aerosol data into ambient, humidified data and accounts for the contribution of coarse-mode aerosol particles in its retrievals. We apply ISARA to the NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) field campaign data set to perform a preliminary consistency analysis of this campaign's aerosol measurements. Specifically, we compare ISARA-calculated ambient aerosol properties with corresponding measurements from 1) ACTIVATE's in-situ instruments (i.e., internal consistency), 2) Monte Carlo in-situ data simulations (i.e., synthetic consistency), and 3) ACTIVATE's Second Generation High Spectral Resolution Lidar (HSRL-2) and Research Scanning Polarimeter (RSP) instruments (i.e., external consistency). This study demonstrates that 1) appropriate a priori assumptions for aerosol particles lead to consistency between in-situ measurements and remote sensing retrievals in the ACTIVATE campaign, 2) ambient aerosol properties retrieved from dry in-situ and the RSP polarimetric data are shown to be consistent for the first time in literature, 3) measurements are externally consistent even when moderately absorbing (imaginary refractive index (IRI) > 0.015) aerosol is present, and 4) ISARA is limited by probable under-sampling of coarse-mode particles in its calculations. The overall success of this preliminary consistency analysis shows that ISARA can enable systematic, streamlined closure of field campaign aircraft aerosol data sets at large.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Sanja Dmitrovic, Joseph S. Schlosser, Ryan Bennett, Brian Cairns, Gao Chen, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Michael A. Jones, Jeffrey S. Reid, Taylor J. Shingler, Michael A. Shook, Armin Sorooshian, Kenneth L. Thornhill, Luke D. Ziemba, and Snorre Stamnes

Status: open (until 24 Dec 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Sanja Dmitrovic, Joseph S. Schlosser, Ryan Bennett, Brian Cairns, Gao Chen, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Michael A. Jones, Jeffrey S. Reid, Taylor J. Shingler, Michael A. Shook, Armin Sorooshian, Kenneth L. Thornhill, Luke D. Ziemba, and Snorre Stamnes
Sanja Dmitrovic, Joseph S. Schlosser, Ryan Bennett, Brian Cairns, Gao Chen, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Michael A. Jones, Jeffrey S. Reid, Taylor J. Shingler, Michael A. Shook, Armin Sorooshian, Kenneth L. Thornhill, Luke D. Ziemba, and Snorre Stamnes

Viewed

Total article views: 163 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
132 27 4 163 4 2
  • HTML: 132
  • PDF: 27
  • XML: 4
  • Total: 163
  • BibTeX: 4
  • EndNote: 2
Views and downloads (calculated since 30 Oct 2024)
Cumulative views and downloads (calculated since 30 Oct 2024)

Viewed (geographical distribution)

Total article views: 161 (including HTML, PDF, and XML) Thereof 161 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download
Short summary
This study focuses on aerosol particles, which critically influence the atmosphere by scattering and absorbing light. To understand these interactions, airborne field campaigns deploy instruments that can measure these particles’ directly or indirectly via remote sensing. We introduce the In Situ Aerosol Retrieval Algorithm (ISARA) to ensure consistency between aerosol measurements and show that the two data sets generally align, with some deviation caused by the presence of larger particles.