Preprints
https://doi.org/10.5194/egusphere-2024-3032
https://doi.org/10.5194/egusphere-2024-3032
02 Oct 2024
 | 02 Oct 2024

Lidar estimates of birch pollen number, mass and related CCN concentrations

Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula

Abstract. Accurate representation of microphysical properties of atmospheric aerosol particles – such as number, mass and cloud condensation nuclei (CCN) concentration – is key to constraining climate forcing estimations and improving weather and air quality forecasts. Lidars capable of vertically resolving aerosol optical properties have been increasingly utilized to study aerosol-cloud interactions, allowing for estimations of cloud-relevant microphysical properties. Recently, lidars have been employed to identify and monitor pollen particles in the atmosphere, an understudied aerosol particle with health and possibly climate implications. Lidar remote sensing of pollen is an emerging research field, and in this study, we present for the first time retrievals of particle number, mass, CCN, giant CCN (GCCN) and ultra–giant CCN (UGCCN) concentration estimations of birch pollen derived from polarization lidar observations and specifically from a Vaisala CL61 ceilometer.

A pivotal role in these estimations is played by the conversion factors necessary to convert the optical measurements into microphysical properties. This set of conversion parameters for birch pollen is derived from in situ observations of major birch pollen events in Vehmasmäki station in Eastern Finland in 2021. Then, the conversion factors are applied to ground-based lidar observations and compared against in situ measurements of aerosol and pollen particles. In turn, this demonstrates the potential of ground-based lidars such as a ceilometer network with polarization capacity to document large-scale birch pollen outbursts in detail and thus to provide valuable information for climate, cloud, and air quality modeling efforts, elucidating the role of pollen within the atmospheric system.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

05 Feb 2025
Lidar estimates of birch pollen number, mass, and CCN-related concentrations
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
Atmos. Chem. Phys., 25, 1639–1657, https://doi.org/10.5194/acp-25-1639-2025,https://doi.org/10.5194/acp-25-1639-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Every year a vast number of people experience allergic reactions due to exposure in airborne...
Share