Preprints
https://doi.org/10.5194/egusphere-2024-2814
https://doi.org/10.5194/egusphere-2024-2814
22 Oct 2024
 | 22 Oct 2024

Heterogeneous Phototransformation of Halogenated Polycyclic Aromatic Hydrocarbons: Influencing Factors, Mechanisms and Products

Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng

Abstract. Chlorinated and brominated polycyclic aromatic hydrocarbons (XPAHs) are emerging pollutants widely found in atmospheric particulate matter (PM). However, their environmental transformation mechanisms remain poorly understood. In this study, we collected PM samples of varying sizes over a year for XPAH analysis and found the average concentrations of XPAHs peaked in winter and were dominated by PM1 (47.0 %). Correlation analysis with relevant meteorological parameters showed strong associations between XPAH fluctuations and PM, temperatures, and humidity. Hence, controlled laboratory experiments were conducted to explore the influence of particle size, sunlight duration, temperature, humidity, and oxidant concentrations on XPAH transformation. Our results indicated that the transformation rates of XPAHs were influenced by the parent polycyclic aromatic hydrocarbon structures, with phenanthrene < fluoranthene < pyrene < benz[a]anthracene ≈ anthracene < benzo[a]pyrene, as well as the substitution of halogens: chlorinated < brominated. Furthermore, the photo irradiation promoted the heterogeneous transformation of XPAHs, with this process being accelerated by the increased concentrations of reactive oxygen species and elevated temperature, peaking at the humidity level of 45 %. The transformation products were identified by nontarget analysis. We then proposed phototransformation pathways for XPAHs, suggesting a mechanism involving dechlorination followed by oxidation. Predictions were made regarding the persistence, bioaccumulation, long-range transportation, and toxicities of XPAHs and their transformation products, showing a decrement in environmental risks as the transformation progressed. This study provides novel insights into the primary influencing factors for particulate XPAH variations and the mechanisms of heterogeneous phototransformation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

09 Apr 2025
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025,https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2814', Ahsan Habib, 01 Nov 2024
    • AC1: 'Reply on RC1', Rong Jin, 28 Nov 2024
  • CC1: 'Comment on egusphere-2024-2814', Angelo Cecinato, 22 Nov 2024
    • AC2: 'Reply on CC1', Rong Jin, 28 Nov 2024
  • CC2: 'Reviewer Official Report on egusphere-2024-2814', Angelo Cecinato, 17 Jan 2025
  • RC2: 'Comment on egusphere-2024-2814', Anonymous Referee #2, 20 Jan 2025

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2814', Ahsan Habib, 01 Nov 2024
    • AC1: 'Reply on RC1', Rong Jin, 28 Nov 2024
  • CC1: 'Comment on egusphere-2024-2814', Angelo Cecinato, 22 Nov 2024
    • AC2: 'Reply on CC1', Rong Jin, 28 Nov 2024
  • CC2: 'Reviewer Official Report on egusphere-2024-2814', Angelo Cecinato, 17 Jan 2025
  • RC2: 'Comment on egusphere-2024-2814', Anonymous Referee #2, 20 Jan 2025

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Rong Jin on behalf of the Authors (21 Jan 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (11 Feb 2025) by Allan Bertram
AR by Rong Jin on behalf of the Authors (12 Feb 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (14 Feb 2025) by Allan Bertram
AR by Rong Jin on behalf of the Authors (14 Feb 2025)  Manuscript 

Journal article(s) based on this preprint

09 Apr 2025
Heterogeneous phototransformation of halogenated polycyclic aromatic hydrocarbons: influencing factors, mechanisms and products
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Atmos. Chem. Phys., 25, 3981–3994, https://doi.org/10.5194/acp-25-3981-2025,https://doi.org/10.5194/acp-25-3981-2025, 2025
Short summary
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng
Yueyao Yang, Yahui Liu, Guohua Zhu, Bingcheng Lin, Shanshan Zhang, Xin Li, Fangxi Xu, He Niu, Rong Jin, and Minghui Zheng

Viewed

Total article views: 599 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
342 125 132 599 74 17 24
  • HTML: 342
  • PDF: 125
  • XML: 132
  • Total: 599
  • Supplement: 74
  • BibTeX: 17
  • EndNote: 24
Views and downloads (calculated since 22 Oct 2024)
Cumulative views and downloads (calculated since 22 Oct 2024)

Viewed (geographical distribution)

Total article views: 589 (including HTML, PDF, and XML) Thereof 589 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 09 Apr 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Halogenated polycyclic aromatic hydrocarbons (XPAHs) are emerging pollutants. The stability during the atmospheric transformation processes is crucial for predicting their environmental fate and assessing associated risks. Here, we conducted field studies and laboratory simulation experiments to reveal the mechanisms, influencing factors and products for XPAHs’ heterogeneous phototransformation. Results revealed that the conversion of XPAHs led to a reduction in environmental risk.
Share