Preprints
https://doi.org/10.5194/egusphere-2024-279
https://doi.org/10.5194/egusphere-2024-279
12 Feb 2024
 | 12 Feb 2024

Misidentified subglacial lake beneath the Devon Ice Cap, Canadian Arctic: A new interpretation from seismic and electromagnetic data

Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier

Abstract. In 2018 the first subglacial lake in the Canadian Artic was proposed to exist beneath Devon Ice cap, based on the analysis of airborne radar data. Here, we report a new interpretation of the subglacial material beneath Devon Ice Cap, supported by data acquired from multiple surface-based geophysical methods in 2022. The geophysical data recorded included 9 km of active source seismic reflection profiles, 7 transient electromagnetic soundings and 17 magnetotellurics stations. These surface-based geophysical datasets were collected above the inferred locations of the subglacial lakes and show no evidence for the presence of subglacial water. The acoustic impedance of the subglacial material, estimated from the seismic data, is 9.49 ± 1.92 x 106 kg m-2 s-1, comparable to consolidated or frozen sediment. The resistivity models obtained by inversion of both the transient electromagnetic and magnetotelluric measurements show the presence of highly resistive rock layers (1000 – 100000 Ω.m) directly beneath the ice. Re-evaluation of the airborne reflectivity data show that the radar attenuation rates were likely overestimated, leading to an overestimation of the basal reflectivity in the original radar studies. Here, we derive new radar attenuation rates using the temperature- and chemistry-dependent Arrhenius equation, and when applied to correct the returned bed power, the bed power does not meet the basal reflectivity threshold expected over subglacial water. Thus, the radar interpretation is now consistent with the seismic and electromagnetic observations of dry or frozen, non-conductive basal material.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-279', Anonymous Referee #1, 25 Mar 2024
    • AC2: 'Reply on RC1', Siobhan Killingbeck, 06 Jun 2024
  • RC2: 'Comment on egusphere-2024-279', Anonymous Referee #2, 28 Mar 2024
    • AC1: 'Reply on RC2', Siobhan Killingbeck, 06 Jun 2024
  • RC3: 'Comment on egusphere-2024-279', Anonymous Referee #3, 13 May 2024
    • AC3: 'Reply on RC3', Siobhan Killingbeck, 06 Jun 2024
Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier
Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier

Viewed

Total article views: 544 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
377 145 22 544 7 12
  • HTML: 377
  • PDF: 145
  • XML: 22
  • Total: 544
  • BibTeX: 7
  • EndNote: 12
Views and downloads (calculated since 12 Feb 2024)
Cumulative views and downloads (calculated since 12 Feb 2024)

Viewed (geographical distribution)

Total article views: 551 (including HTML, PDF, and XML) Thereof 551 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 12 Jun 2024
Download
Short summary
Our study presents a new interpretation from surface-based geophysical data of the subglacial material beneath Devon Ice Cap in the Canadian Arctic, where a subglacial lake was thought to exist based on the analysis of airborne geophysical data. Here, we demonstrate that there is no evidence of subglacial water, and the subglacial lake has likely been misidentified.