Preprints
https://doi.org/10.5194/egusphere-2024-2675
https://doi.org/10.5194/egusphere-2024-2675
18 Sep 2024
 | 18 Sep 2024

Simulated ocean oxygenation during the interglacials MIS 5e and MIS 9e

Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain

Abstract. Recent studies investigating future warming scenarios have shown that the ocean oxygen content will continue to decrease over the coming century due to ocean warming and changes in oceanic circulation. However, significant uncertainties remain regarding the magnitude and patterns of future ocean deoxygenation. Here, we simulate ocean oxygenation with the ACCESS ESM1.5 model during two past interglacials that were warmer than the preindustrial climate, the Last Interglacial (Marine Isotope Stage (MIS) 5e, ~ 129–115 ka) and MIS 9e (~ 336–321 ka). While orbital parameters were similar during MIS 5e and MIS 9e, with lower precession, higher eccentricity and higher obliquity than pre-industrial, greenhouse gas radiative forcing was highest during MIS 9e. We find that the global ocean is overall less oxygenated in the MIS 5e and MIS 9e simulations compared to the preindustrial control run and that oxygen concentrations are more sensitive to changes in the distribution of incoming solar radiation than to differences in greenhouse gas concentrations. Large regions in the Mediterranean Sea are hypoxic in the MIS 5e simulation, and to a lesser extent in the MIS 9e simulation, due to an intensification and expansion of the African Monsoon, enhanced river run-off and resulting freshening of surface waters and stratification. Upwelling zones off the coast of North America and North Africa are weaker in both simulations compared to the preindustrial control run, leading to less primary productivity and export production. Antarctic Bottom Water is less oxygenated, while North Atlantic Deep Water and the North Pacific Ocean at intermediate depths are higher in oxygen content. All changes in oxygen concentrations are primarily caused by changes in ocean circulation and export production and secondarily by changes in temperature and solubility.

Competing interests: One of the co-authors is a co-editor-in-chief of Climate of the Past.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

27 Jun 2025
Simulated ocean oxygenation during the interglacials MIS 5e and MIS 9e
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 21, 1093–1122, https://doi.org/10.5194/cp-21-1093-2025,https://doi.org/10.5194/cp-21-1093-2025, 2025
Short summary
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2675', Anonymous Referee #1, 22 Oct 2024
  • RC2: 'Comment on egusphere-2024-2675', Anonymous Referee #2, 29 Oct 2024
  • RC3: 'Comment on egusphere-2024-2675', Anonymous Referee #3, 29 Oct 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-2675', Anonymous Referee #1, 22 Oct 2024
  • RC2: 'Comment on egusphere-2024-2675', Anonymous Referee #2, 29 Oct 2024
  • RC3: 'Comment on egusphere-2024-2675', Anonymous Referee #3, 29 Oct 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (28 Dec 2024) by Zhongshi Zhang
AR by Bartholomé Duboc on behalf of the Authors (06 Feb 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (09 Feb 2025) by Zhongshi Zhang
RR by Anonymous Referee #3 (25 Feb 2025)
RR by Anonymous Referee #2 (02 Mar 2025)
ED: Publish subject to technical corrections (15 Mar 2025) by Zhongshi Zhang
AR by Bartholomé Duboc on behalf of the Authors (28 Mar 2025)  Author's response   Manuscript 

Journal article(s) based on this preprint

27 Jun 2025
Simulated ocean oxygenation during the interglacials MIS 5e and MIS 9e
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain
Clim. Past, 21, 1093–1122, https://doi.org/10.5194/cp-21-1093-2025,https://doi.org/10.5194/cp-21-1093-2025, 2025
Short summary
Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain

Data sets

Simulated ocean oxygenation during the interglacials MIS 5e and MIS 9e Nicholas K.H. Yeung and Bartholomé Duboc https://doi.org/10.26190/unsworks/30420

Simulated ocean oxygenation during the interglacials MIS 5e and MIS 9e Nicholas K.H. Yeung and Bartholomé Duboc https://doi.org/10.26190/unsworks/30420

Bartholomé Duboc, Katrin J. Meissner, Laurie Menviel, Nicholas K. H. Yeung, Babette Hoogakker, Tilo Ziehn, and Matthew Chamberlain

Viewed

Total article views: 1,194 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
381 165 648 1,194 29 36
  • HTML: 381
  • PDF: 165
  • XML: 648
  • Total: 1,194
  • BibTeX: 29
  • EndNote: 36
Views and downloads (calculated since 18 Sep 2024)
Cumulative views and downloads (calculated since 18 Sep 2024)

Viewed (geographical distribution)

Total article views: 1,179 (including HTML, PDF, and XML) Thereof 1,179 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 27 Jun 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We use an Earth System Model to simulate ocean oxygen during two past warm periods, the Last Interglacial (~129–115 ka) and Marine Isotope Stage (MIS) 9e (~336-321 ka).  The global ocean is overall less oxygenated compared to the preindustrial simulation. Large regions in the Mediterranean Sea are oxygen deprived in the Last Interglacial simulation, and to a lesser extent in the MIS 9e simulation, due to an intensification and expansion of the African Monsoon and enhanced river run-off.
Share