Detection and reconstruction of rock glaciers kinematic over 24 years (2000–2024) from Landsat imagery
Abstract. The importance of monitoring rock glacier dynamics is now widely acknowledged within the scientific community following the designation of rock glacier velocity as a parameter of the Essential Climatic Variable permafrost. However, the representation of long-term spatio-temporal patterns of rock glaciers velocity at regional scale remains challenging due to the unavailability of high-resolution remote sensing datasets. This study presents a robust methodological approach based on the redundancy of information, joint with the inversion of surface displacement time series and the automatic detection of persistent moving areas (PMA) applied to rock glacier monitoring, using annual open-access, medium-resolution Landsat 7/8 optical imagery. This methodology enables the detection, quantification and analysis of surface kinematics of 382 gravitational slope movements over a 24-years, of which 153 corresponds to rock glaciers. This is the first time that Landsat images were used to quantify rock glacier displacements and derived velocities. The results demonstrate an average velocity of 0.37 ± 0.07 m y-1 overall 24-year for all rock glaciers, with some exceptions where large rock glaciers and debris frozen landform exhibit surface velocities exceeding 2 m y-1. The results of this study shows a good agreement with high-resolution imagery and recent GNSS measurements. L7/8 imagery tends to underestimate surface velocity by approximately 10–20 %. The intrinsic limitations of Landsat imagery make it challenging to interpret annual velocity variations. Notwithstanding, decadal velocity changes can be depicted for the fastest and largest rock glaciers, revealing 10 % of the accelerations in one decade. Our study suggests a correlation between surface velocity and local topographic parameters (orientation, slope, elevation) as possible controlling factors. In conclusion, this study demonstrates the feasibility of using medium-resolution optical imagery, providing an alternative to InSAR, for monitoring rock glacier kinematics anywhere over the World.