Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-2239
https://doi.org/10.5194/egusphere-2024-2239
12 Aug 2024
 | 12 Aug 2024

Brief Communication: Representation of heat conduction into the ice in marine ice shelf melt modeling

Jonathan Wiskandt and Nicolas Jourdain

Abstract. Basal melt of marine terminating glaciers is a key uncertainty in predicting the future climate and the evolution of the Antarctic and Greenland ice sheets. Regional ocean circulation models use parameterizations that depend on the available heat to parameterize basal melt. The heat budget at the ice–ocean interface includes turbulent heat flux from the ocean below, latent heat for phase transition, and heat conduction into the ice. Here we review the estimation of heat conduction into the ice, which has been treated in various ways in modelling studies so far. We show that the formulation of Holland and Jenkins (1999) best captures the variety of temperature profiles measured in boreholes. Accounting for heat conduction into the ice reduces melt rates by up to 28 %.

Competing interests: Nicolas Jourdain is an editor of The Cryosphere.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download
Short summary
In ocean models, submarine melt of ice shelves is parameterized based on the heat budget at the...
Share