Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-209
https://doi.org/10.5194/egusphere-2024-209
12 Feb 2024
 | 12 Feb 2024

Using Sentinel-1 wet snow maps to inform fully-distributed physically-based snowpack models

Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas

Abstract. Distributed energy and mass-balance snowpack models at sub-kilometric scale have emerged as a tool for snow-hydrological forecasting over large areas. However, their development and evaluation often rely on a handful of well observed sites on flat terrain with limited topographic representativeness. Validation of such models over large scales in rugged terrain is therefore necessary. Remote sensing of wet snow has always been motivated by its potential utility in snow hydrology. However, its concrete potential to enhance physically based operational snowpack models in real time remains unproven. Wet snow maps could potentially help refining the temporal accuracy of simulated snowmelt onset, while the information content of remotely sensed snow cover fraction pertains predominantly to the ablation season. In this work, wet snow maps, derived from Sentinel-1 and snow cover fraction (SCF) retrieval from Sentinel-2 are compared against model results from a fully distributed energy-balance snow model (FSM2oshd). The comparative analysis spans the winter seasons from 2017 to 2021, focusing on the geographic region of Switzerland. We use the concept of wet snow line (WSL) to compare Sentinel-1 wet snow maps with simulations. We show that while the match of the model with flat-field snow depth observation is excellent, the WSL reveals insufficient snow melt in the southern aspects. Amending the albedo parametrization within FSM2oshd allowed achieving earlier melt in such aspects preferentially, thereby reducing WSL biases. Biases with respect to Sentinel-2 snow line (SL) observations were also substantially reduced. These results suggest that wet snow maps contain valuable real-time information for snowpack models, nicely complementing flat-field snow depth observations, particularly in complex terrain and at higher elevations. The persisting correlation between wet snow line and snow line biases provides insights into refined development, tuning and data assimilation methodologies for operational snow-hydrological modelling.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

11 Dec 2024
Exploring how Sentinel-1 wet-snow maps can inform fully distributed physically based snowpack models
Bertrand Cluzet, Jan Magnusson, Louis Quéno, Giulia Mazzotti, Rebecca Mott, and Tobias Jonas
The Cryosphere, 18, 5753–5767, https://doi.org/10.5194/tc-18-5753-2024,https://doi.org/10.5194/tc-18-5753-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We use novel wet snow maps from Sentinel-1 to evaluate simulations of a snow-hydrological model...
Share