Preprints
https://doi.org/10.5194/egusphere-2024-1949
https://doi.org/10.5194/egusphere-2024-1949
15 Jul 2024
 | 15 Jul 2024

Laboratory heat transport experiments reveal grain size and flow velocity dependent local thermal non-equilibrium effects

Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau

Abstract. Heat transport in porous media is crucial for gaining earth science process understanding and engineering applications such as geothermal system design. While heat transport models are commonly simplified by assuming local thermal equilibrium (LTE, solid and fluid phases are averaged), local thermal non-equilibrium (LTNE, solid and fluid phases are considered separately) heat transport has long been hypothesized and reports have emerged. However, experiments with realistic grain sizes and flow conditions are still lacking in the literature. To detect LTNE effects, we conducted comprehensive laboratory heat transport experiments at Darcy velocities ranging from 3 to 23 m d−1 and measured the temperature of fluid and solid phases separately for glass spheres with diameters of 5, 10, 15, 20, 25 and 30 mm. Four replicas of each size were embedded at discrete distances along the flow path in small glass beads to stabilize the flow field. Our sensors were meticulously calibrated and measurements were post-processed to reveal LTNE, expressed as the difference between solid and fluid temperature during the passing of a thermal step input. To gain insight into the heat transport properties and processes, we simulated our experimental results in 1D using commonly accepted analytical solutions for LTE and a numerical solution of LTNE equations. Our results demonstrate significant LTNE effects with increasing grain size and water flow velocity. Surprisingly, some temperature differences were negative indicating that the heat front propagates non-uniformly likely caused by spatial variations of the flow field. The fluid temperature modeled by the LTE analytical solution exhibited relatively good agreement with experimental fluid temperature only for grain sizes from 5 mm to 15 mm. However, for larger grain sizes (between 20 mm and 30 mm), the temperature difference between fluid and solid phases became too significant to be represented by an LTE model. Additionally, for larger grain sizes (≥ 20 mm), the LTNE model failed to predict the magnitude of LTNE for all tested flow velocities due to experimental conditions being inadequately represented by the 1D model with ideal step input. Future studies should employ more sophisticated numerical models to examine the heat transport processes and accurately analyze LTNE effects, considering non-uniform flow effects and multi-dimensional solution. This is essential to determine the validity limits of LTE conditions for heat transport in natural systems such as gravel aquifers with grain sizes larger than 20 mm.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Comment on egusphere-2024-1949', Giacomo Medici, 06 Aug 2024
    • AC1: 'Reply on CC1', Haegyeong Lee, 27 Aug 2024
  • RC1: 'Comment on egusphere-2024-1949', quanrong wang, 07 Aug 2024
    • AC2: 'Reply on RC1', Haegyeong Lee, 27 Aug 2024
  • RC2: 'Comment on egusphere-2024-1949', Anonymous Referee #2, 12 Aug 2024
    • AC3: 'Reply on RC2', Haegyeong Lee, 27 Aug 2024
  • RC3: 'Comment on egusphere-2024-1949', Toshiyuki Bandai, 13 Aug 2024
    • AC4: 'Reply on RC3', Haegyeong Lee, 27 Aug 2024
      • RC4: 'Reply on AC4', Toshiyuki Bandai, 27 Aug 2024
        • AC5: 'Reply on RC4', Haegyeong Lee, 03 Sep 2024
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau

Viewed

Total article views: 569 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
381 139 49 569 10 10
  • HTML: 381
  • PDF: 139
  • XML: 49
  • Total: 569
  • BibTeX: 10
  • EndNote: 10
Views and downloads (calculated since 15 Jul 2024)
Cumulative views and downloads (calculated since 15 Jul 2024)

Viewed (geographical distribution)

Total article views: 605 (including HTML, PDF, and XML) Thereof 605 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 20 Nov 2024
Download
Short summary
A systematic laboratory experiment elucidates two-phase heat transport due to water flow in saturated porous media to understand thermal propagation in aquifers. Results reveal delayed thermal arrival in the solid phase, depending on grain size and flow velocity. Analytical modeling using standard local thermal equilibrium (LTE) and advanced local thermal non-equilibrium (LTNE) theory fails to describe temperature breakthrough curves, highlighting the need for more advanced numerical approaches.